Abstract

The absorption characteristic of lithium niobate crystals doped with chromium and copper (Cr and Cu) is investigated. We find that there are two apparent absorption bands for LiNbO3:Cr:Cu crystal doped with 0.14 wt.% Cr2O3 and 0.011 wt.% CuO; one is around 480 nm, and the other is around 660 nm. With a decrease in the doping composition of Cr and an increase in the doping composition of Cu, no apparent absorption band in the shorter wavelength range exists. The higher the doping level of Cr, the larger the absorbance around 660 nm. Although a 633 nm red light is located in the absorption band around 660 nm, the absorption at 633 nm does not help the photorefractive process; i.e., unlike other doubly doped crystals, for example, LiNbO3:Fe:Mn crystal, a nonvolatile holographic recording can be realized by a 633 nm red light as the recording light and a 390 nm UV light as the sensitizing light. For LiNbO3:Cr:Cu crystals, by changing the recording light from a 633 nm red light to a 514 nm green light, sensitizing with a 390 nm UV light and a 488 nm blue light, respectively, a nonvolatile holographic recording can be realized. Doping the appropriate Cr (for example, NCr = 2.795 × 1025m−3 and NCr/NCu = 1) benefits the improvement of holographic recording properties.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
    [CrossRef]
  2. Y. Liu, L. Liu, C. Zhou, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
    [CrossRef]
  3. L. Ren, L. Liu, D. Liu, J. Zu, Z. Luan, “Optimal switching from recording to fixing for high diffraction from a LiNbO3: Ce:Cu photorefractive nonvolatile hologram,” Opt. Lett. 29, 186–188 (2004).
    [CrossRef] [PubMed]
  4. X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
    [CrossRef]
  5. D. Liu, L. Liu, C. Zhou, L. Ren, G. Li, “Nonvolatile holograms in LiNbO3:Fe:Cu by use of the bleaching effect,” Appl. Opt. 41, 6809–6814 (2002).
    [CrossRef] [PubMed]
  6. O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1989).
    [CrossRef]
  7. Y. Ming, E. Krätzig, R. Orlowski, “Photorefractive effect in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi A 92, 221–229 (1985).
    [CrossRef]
  8. D. K. McMillen, T. D. Hudson, J. Wagner, J. Singleton, “Holographic recording in specially doped lithium niobate crystals,” Opt. Express 2, 491–502 (1998).
    [CrossRef] [PubMed]
  9. Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
    [CrossRef]
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  11. A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  12. L. Ren, L. Liu, D. Liu, J. Zu, Z. Luan, “Recording and fixing dynamics of nonvolatile photorefractive holograms in LiNbO3: Fe:Mn crystals,” J. Opt. Soc. Am. B 20, 2162–2173 (2003).
    [CrossRef]

2004 (1)

2003 (2)

2002 (1)

2001 (1)

2000 (2)

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

1998 (2)

K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

D. K. McMillen, T. D. Hudson, J. Wagner, J. Singleton, “Holographic recording in specially doped lithium niobate crystals,” Opt. Express 2, 491–502 (1998).
[CrossRef] [PubMed]

1985 (1)

Y. Ming, E. Krätzig, R. Orlowski, “Photorefractive effect in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi A 92, 221–229 (1985).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

Berben, D.

Buse, K.

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

Hartwig, U.

Hudson, T.

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Hudson, T. D.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Krätzig, E.

Y. Ming, E. Krätzig, R. Orlowski, “Photorefractive effect in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi A 92, 221–229 (1985).
[CrossRef]

Li, G.

Liu, D.

Liu, L.

Liu, Y.

Luan, Z.

Luennemann, M.

McMillen, D. K.

Ming, Y.

Y. Ming, E. Krätzig, R. Orlowski, “Photorefractive effect in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi A 92, 221–229 (1985).
[CrossRef]

Orlowski, R.

Y. Ming, E. Krätzig, R. Orlowski, “Photorefractive effect in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi A 92, 221–229 (1985).
[CrossRef]

Psaltis, D.

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

Ren, L.

Schirmer, O. F.

O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1989).
[CrossRef]

Singleton, J.

Thiemann, O.

O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1989).
[CrossRef]

Wagner, J.

Yang, Y.

Yue, X.

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Zhou, C.

Zu, J.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Appl. Phys. (1)

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (London) (1)

K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Status Solidi A (1)

Y. Ming, E. Krätzig, R. Orlowski, “Photorefractive effect in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi A 92, 221–229 (1985).
[CrossRef]

Other (1)

O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectral transmission of LiNbO3:Cr:Cu crystals with different composition.

Fig. 2
Fig. 2

Variation of transmission intensity at 633 nm for LiNbO3:Cr:Cu crystals during illumination with UV light. Wave-length and intensity of UV light, 390 nm and 20 mW/cm2, respectively; intensity of the incidence of 633 nm of light, 32 mW/cm2.

Fig. 3
Fig. 3

Spectral transmission of reduction crystal LN4 and as-grown crystal LN5 both doped with 0.075 wt.% Cr2O3 and 0.079 wt.% CuO.

Fig. 4
Fig. 4

Experimental arrangements for recording holographic gratings in LiNbO3:Cr:Cu crystals.

Fig. 5
Fig. 5

Recording and readout curves with 514 nm of green light recorded and 390 nm of UV light sensitized for LiNbO3:Cr:Cu crystals with different compositions.

Fig. 6
Fig. 6

Recording and readout curves with 488 nm of blue light recorded and 390 nm of UV light sensitized for LiNbO3:Cr:Cu crystals with different composition.

Fig. 7
Fig. 7

Recording and readout curves with 514 nm of green light recorded and 488 nm of blue light sensitized for LiNbO3:Cr:Cu crystals with different compositions.

Fig. 8
Fig. 8

Recording curve with 514 nm of green light recorded and 390 nm of UV light sensitized for LN2 crystal.

Tables (2)

Tables Icon

Table 1 Composition of the LiNbO3:Cr:Cu crystals Investigated

Tables Icon

Table 2 Comparison of the Characteristic Parameters of Doubly Doped LiNbO3:Cr:Cu with Different Composition

Metrics