Abstract

Optically writable, thermally erasable surface relief gratings in thin Disperse Red 1 polymethyl methacrylate azopolymer films were used to demonstrate an arbitrarily reconfigurable fiber Bragg filter. Gratings were optically written on azopolymer-coated side-polished fiber blocks, and a write–erase–write cycle was demonstrated. Finite difference time domain simulations reveal that this optically reconfigurable device concept can be optimized in a silicon-on-insulator waveguide platform.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
    [CrossRef]
  2. A. Natansohn, P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
    [CrossRef] [PubMed]
  3. P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
    [CrossRef]
  4. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
    [CrossRef]
  5. N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
    [CrossRef] [PubMed]
  6. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  7. H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
    [CrossRef]
  8. S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
    [CrossRef]
  9. J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
    [CrossRef]
  10. M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
    [CrossRef]
  11. S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
    [CrossRef]
  12. S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994).
    [CrossRef]
  13. Side-polished fiber blocks were made by Javier Pelayo, Departamento de Física Aplicada, Universidad de Zaragoza, Zaragoza 50009, Spain.
  14. Mode solver developed by André Delâge, Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
  15. K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
    [CrossRef]
  16. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, H. Sasabe, “Polymer waveguide overlays for side-polished fiber devices,” Appl. Opt. 37, 453–462 (1998).
    [CrossRef]
  17. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  18. T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  19. W. V. Sorin, H. J. Shaw, “A single-mode fiber evanescent grating reflector,” IEEE J. Lightwave Technol. 5, 1041–1043 (1985).
    [CrossRef]

2002 (1)

A. Natansohn, P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[CrossRef] [PubMed]

2001 (1)

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

1999 (2)

S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
[CrossRef]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

1998 (3)

S. G. Lee, J. P. Sokoloff, B. P. McGinnis, H. Sasabe, “Polymer waveguide overlays for side-polished fiber devices,” Appl. Opt. 37, 453–462 (1998).
[CrossRef]

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

1997 (2)

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1996 (2)

1995 (2)

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
[CrossRef]

1994 (2)

S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994).
[CrossRef]

M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
[CrossRef]

1985 (1)

W. V. Sorin, H. J. Shaw, “A single-mode fiber evanescent grating reflector,” IEEE J. Lightwave Technol. 5, 1041–1043 (1985).
[CrossRef]

Andrés, M. V.

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Bhatia, V.

Bian, S.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Choi, S. S.

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

Costantini, D. M.

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Creaney, S.

K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
[CrossRef]

Cruz, J. L.

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Delâge, André

Mode solver developed by André Delâge, Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

Diez, A.

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Dong, L.

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Erdei, G.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Espindola, R. P.

S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
[CrossRef]

Fox, G. R.

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Holme, N. C. R.

Hong Ky, N.

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Huang, S. Y.

M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
[CrossRef]

Hvilsted, S.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

Jeong, J.

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

Jin, S.

S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
[CrossRef]

Johnstone, W.

K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
[CrossRef]

Kim, D. Y.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Kim, S. Y.

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

Koppa, P.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

Kumar, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Kwon, S. W.

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

Le Blanc, M.

M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
[CrossRef]

Lee, S. B.

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

Lee, S. G.

Li, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Limberger, H. G.

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Liu, W.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Lörincz, E.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

Madden, I.

K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
[CrossRef]

Mavoori, H.

S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
[CrossRef]

McCallion, K.

K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
[CrossRef]

McGinnis, B. P.

Measures, R. M.

M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
[CrossRef]

Muller, C. A. P.

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Natansohn, A.

A. Natansohn, P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[CrossRef] [PubMed]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994).
[CrossRef]

Ohn, M. M.

M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
[CrossRef]

Ortega, B.

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Pelayo, Javier

Side-polished fiber blocks were made by Javier Pelayo, Departamento de Física Aplicada, Universidad de Zaragoza, Zaragoza 50009, Spain.

Popov, E.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Ramanujam, P. S.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

Rochon, P.

A. Natansohn, P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[CrossRef] [PubMed]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994).
[CrossRef]

Salathe, R. P.

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Samuelson, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Sasabe, H.

Segura, A.

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Shaw, H. J.

W. V. Sorin, H. J. Shaw, “A single-mode fiber evanescent grating reflector,” IEEE J. Lightwave Technol. 5, 1041–1043 (1985).
[CrossRef]

Sokoloff, J. P.

Sorin, W. V.

W. V. Sorin, H. J. Shaw, “A single-mode fiber evanescent grating reflector,” IEEE J. Lightwave Technol. 5, 1041–1043 (1985).
[CrossRef]

Strasser, T. A.

S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
[CrossRef]

Szarvas, G.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

Tripathy, S. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Ujhelyi, F.

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

Vengsarkar, A. M.

Viswanathan, N. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Williams, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Xie, S.

S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999).
[CrossRef]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Chem. Rev. (1)

A. Natansohn, P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[CrossRef] [PubMed]

Electron. Lett. (3)

S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998).
[CrossRef]

J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (2)

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

W. V. Sorin, H. J. Shaw, “A single-mode fiber evanescent grating reflector,” IEEE J. Lightwave Technol. 5, 1041–1043 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

J. Mater. Chem. (1)

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[CrossRef]

Macromolecules (1)

S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994).
[CrossRef]

Opt. Fiber Technol. (1)

K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995).
[CrossRef]

Opt. Lett. (2)

Synth. Met. (1)

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001).
[CrossRef]

Other (3)

Side-polished fiber blocks were made by Javier Pelayo, Departamento de Física Aplicada, Universidad de Zaragoza, Zaragoza 50009, Spain.

Mode solver developed by André Delâge, Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated TE mode profiles for a fiber overcoated by uniform (no grating) polymer films of thicknesses 0.1 µm (solid curve) and 0.37 µm (dashed curve) for the parameters given in the text. The left inset shows a sketch of the geometry of the buried waveguide with the polymer film shown as the hatched area. Shown in the right inset is the change in the fiber mode index from neff = 1.464, calculated for a fiber cladding thickness of 2 µm and polymer overlayer thickness ranging from 0 to 0.4 µm.

Fig. 2
Fig. 2

Demonstration of an optically reconfigurable Bragg filter in a side-polished fiber block: (a) device transmission spectrum for an optically written grating for first-order Bragg resonance at 1566 nm; (b) device spectrum after a 2 min thermal erasure at 140 °C; (c) device spectrum for a new grating optically written for Bragg resonance at 1530 nm.

Fig. 3
Fig. 3

High efficiency of an optically reconfigurable azopolymer cladding grating on SOI waveguide. Reflection (triangles) and transmission (squares) grating spectra were calculated with FDTD simulation (two-dimensional). A fully modulated surface grating of period 0.3 µm and length 100 µm in an azopolymer cladding layer of 0.2 µm thickness and refractive index 1.63 were assumed. A 0.3 µm Si core thickness of the SOI waveguide and a bottom oxide cladding thickness of 0.3 µm were assumed. The calculated grating is ∼7 nm FWHM. The insets show TM mode evolution for wavelengths near Bragg resonance (1515 nm) and off Bragg resonance (1505 nm). The propagation length shown in the insets is 100 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ m Δ n eff n eff 1 + ( 2 n eff d m Δ n eff L ) ,

Metrics