Abstract

An optimal system for temperature measurements by coherent anti-Stokes Raman spectroscopy (CARS) in turbulent flames and flows is presented. In addition to a single-mode pump laser and a modeless dye laser, an echelle spectrometer with a cross disperser is used. This system permits simultaneous measurement of the N2 CARS spectrum and the broadband dye laser profile. A procedure is developed to use software to transform this profile into the excitation profile by which the spectrum is referenced. Simultaneous shot-to-shot referencing is compared to sequential averaged referencing for data obtained in flat flames and in room air. At flame temperatures, the resultant 1.5% imprecision is limited by flame fluctuations, indicating that the system may have a single-shot imprecision below 1%. At room temperature, the 3.8% single-shot imprecision is of the same order as the best values reported for dual-broadband pure-rotational CARS. Using the unique shot-to-shot excitation profiles, simultaneous referencing eliminates systematic errors. At 2000 and 300 K, the 95% confidence intervals are estimated to be ±20 and ±10 K, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription