Abstract

Techniques aimed at retrieving water vapor from satellite data of reflected near-infrared solar radiation have progressed significantly in recent years. These techniques rely on observation of water vapor attenuation of near-infrared solar radiation reflected by the Earth’s surface. Ratios of measured radiances at wavelengths inside and outside water vapor absorbing channels are used for retrieval purposes. These ratios partially remove the dependence of surface reflectance on wavelength and are used to retrieve the total column water vapor amount. Hazy atmospheric conditions, however, introduce errors into this widely used technique. A new method based on radiance differences between clear and nearby shadowed surfaces, combined with ratios between water vapor absorbing and window regions, is presented that improves water vapor retrievals under hazy atmospheric conditions. Radiative transfer simulations are used to demonstrate the advantage offered by this technique.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Peixoto, A. H. Oort, Physics of Climate (American Institute of Physics, 1992), pp. 278–285.
  2. D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
    [CrossRef]
  3. J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
    [CrossRef]
  4. C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982).
    [CrossRef]
  5. R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
    [CrossRef]
  6. J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.
  7. B.-C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
    [CrossRef]
  8. R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
    [CrossRef]
  9. Y. J. Kaufman, B.-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
    [CrossRef]
  10. C. C. Borel, W. B. Clodius, J. Johnson, “Water vapor retrieval over many surface types,” in Algorithms for Multi-spectral and Hyperspectral Imagery II, A. E. Iverson, ed., Proc. SPIE2758, 218–228 (1996).
    [CrossRef]
  11. S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
    [CrossRef]
  12. S. Thai, M. V. Schonermark, “Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS),” Int. J. Remote Sens. 19, 3223–3236 (1998).
    [CrossRef]
  13. M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999).
    [CrossRef]
  14. B.-C. Gao, Y. Kaufman, “Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels,” J. Geophys. Res. 108, 4389, doi: (2003).
    [CrossRef]
  15. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
    [CrossRef]
  16. B.-C. Gao, Y. Kaufman, “MODIS near-IR water vapor algorithm: algorithm theoretical basis document (MOD05),” NASA Algorithm Tech. Background Doc. Publ. Product ID MOD05 (NASA Goddard Space Flight Center, 1998).
  17. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, K. Jayaweera, “A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  18. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
    [CrossRef]
  19. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U. S. Air Force Geophysics Laboratory, 1989).
  20. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).
  21. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).
  22. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  23. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, 1999).
    [CrossRef]
  24. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).
  25. S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.
  26. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  27. E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in Optical Propagation in the Atmosphere, Agard Conference Proceedings 183, (National Technical Information Service ADA 028615, 1976).
  28. S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Rep. (Cooperative Institute for Research in the Atmosphere, Boulder, Colo., 1990).
  29. B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: How should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002).
    [CrossRef] [PubMed]
  30. C. G. Gelpi, “Removing path-scattered radiance from over-ocean spectrometer images for water vapor estimation,” Remote Sens. Environ. 74, 414–421 (2000).
    [CrossRef]
  31. R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE J. Geosci. Remote Sens. 23, 525–633 (1985).
  32. S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).
  33. M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
    [CrossRef]
  34. Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
    [CrossRef]

2003 (1)

B.-C. Gao, Y. Kaufman, “Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels,” J. Geophys. Res. 108, 4389, doi: (2003).
[CrossRef]

2002 (1)

2000 (1)

C. G. Gelpi, “Removing path-scattered radiance from over-ocean spectrometer images for water vapor estimation,” Remote Sens. Environ. 74, 414–421 (2000).
[CrossRef]

1999 (1)

M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999).
[CrossRef]

1998 (3)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

S. Thai, M. V. Schonermark, “Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS),” Int. J. Remote Sens. 19, 3223–3236 (1998).
[CrossRef]

M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
[CrossRef]

1997 (2)

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
[CrossRef]

1996 (1)

R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
[CrossRef]

1992 (1)

Y. J. Kaufman, B.-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

1990 (2)

B.-C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

1989 (1)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

1988 (1)

1985 (1)

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE J. Geosci. Remote Sens. 23, 525–633 (1985).

1984 (1)

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

1983 (1)

D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

1982 (1)

C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982).
[CrossRef]

1974 (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

Acharya, P. K.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Ackerman, S.

M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
[CrossRef]

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Adler-Golden, S. M.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Alley, R. E.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Anderson, G. P.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

Basist, A.

R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
[CrossRef]

Baum, B.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U. S. Air Force Geophysics Laboratory, 1989).

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Bernstein, L. S.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U. S. Air Force Geophysics Laboratory, 1989).

Borel, C. C.

C. C. Borel, W. B. Clodius, J. Johnson, “Water vapor retrieval over many surface types,” in Algorithms for Multi-spectral and Hyperspectral Imagery II, A. E. Iverson, ed., Proc. SPIE2758, 218–228 (1996).
[CrossRef]

Bouffies, S.

S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
[CrossRef]

Breon, F. M.

S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
[CrossRef]

Breon, F.-M.

M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Bruegge, C. J.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Camy-Payret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Carrere, C.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chang, A. T. C.

C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982).
[CrossRef]

Chang, H. D.

C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982).
[CrossRef]

Chen, B.

Chesters, D. C.

D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

Chetwynd, J. H.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).

Clodius, W. B.

C. C. Borel, W. B. Clodius, J. Johnson, “Water vapor retrieval over many surface types,” in Algorithms for Multi-spectral and Hyperspectral Imagery II, A. E. Iverson, ed., Proc. SPIE2758, 218–228 (1996).
[CrossRef]

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.

Conel, J. E.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Deschamps, P. Y.

R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

Dothe, H.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Dubuisson, P.

S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Felde, G. W.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in Optical Propagation in the Atmosphere, Agard Conference Proceedings 183, (National Technical Information Service ADA 028615, 1976).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).

Ferraro, R. R.

R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Flynn, L.

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Fraser, R. S.

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE J. Geosci. Remote Sens. 23, 525–633 (1985).

Frey, R.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Frouin, R.

R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gao, B. C.

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Gao, B.-C.

B.-C. Gao, Y. Kaufman, “Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels,” J. Geophys. Res. 108, 4389, doi: (2003).
[CrossRef]

Y. J. Kaufman, B.-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

B.-C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

B.-C. Gao, Y. Kaufman, “MODIS near-IR water vapor algorithm: algorithm theoretical basis document (MOD05),” NASA Algorithm Tech. Background Doc. Publ. Product ID MOD05 (NASA Goddard Space Flight Center, 1998).

Gardner, J. A.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).

Gary, B. L.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Gelpi, C. G.

C. G. Gelpi, “Removing path-scattered radiance from over-ocean spectrometer images for water vapor estimation,” Remote Sens. Environ. 74, 414–421 (2000).
[CrossRef]

Goetz, A. F. H.

B.-C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Green, R. O.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Grody, N. C.

R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
[CrossRef]

Gumley, L.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hoke, M. L.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Jayaweera, K.

Jeong, L. S.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Johnson, J.

C. C. Borel, W. B. Clodius, J. Johnson, “Water vapor retrieval over many surface types,” in Algorithms for Multi-spectral and Hyperspectral Imagery II, A. E. Iverson, ed., Proc. SPIE2758, 218–228 (1996).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kaufman, Y.

B.-C. Gao, Y. Kaufman, “Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels,” J. Geophys. Res. 108, 4389, doi: (2003).
[CrossRef]

B.-C. Gao, Y. Kaufman, “MODIS near-IR water vapor algorithm: algorithm theoretical basis document (MOD05),” NASA Algorithm Tech. Background Doc. Publ. Product ID MOD05 (NASA Goddard Space Flight Center, 1998).

Kaufman, Y. J.

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Y. J. Kaufman, B.-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE J. Geosci. Remote Sens. 23, 525–633 (1985).

King, M.

M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.

Larsen, N.

M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
[CrossRef]

Lecomte, P.

R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

Li, R. R.

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Li, W.

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Margolis, J. S.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Matthew, M. W.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

McCaan, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).

Mello, J. B.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Menzel, P.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Moeller, C.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Oort, A. H.

J. P. Peixoto, A. H. Oort, Physics of Climate (American Institute of Physics, 1992), pp. 278–285.

Ostrow, X.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

Peixoto, J. P.

J. P. Peixoto, A. H. Oort, Physics of Climate (American Institute of Physics, 1992), pp. 278–285.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Prabhakara, C.

C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982).
[CrossRef]

Pukall, B.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Ratkowski, A. J.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Remer, L. A.

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Reuter, D.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Richtsmeier, S. C.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

Riggs, G.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U. S. Air Force Geophysics Laboratory, 1989).

Robinson, W. D.

D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

Rosenfield, J.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

Schaaf, C.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Schonermark, M. V.

S. Thai, M. V. Schonermark, “Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS),” Int. J. Remote Sens. 19, 3223–3236 (1998).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.

E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in Optical Propagation in the Atmosphere, Agard Conference Proceedings 183, (National Technical Information Service ADA 028615, 1976).

Stamnes, J. J.

Stamnes, K.

Stephens, G. L.

S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Rep. (Cooperative Institute for Research in the Atmosphere, Boulder, Colo., 1990).

Strabala, K.

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

Susskind, J.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Tanre, D.

M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999).
[CrossRef]

S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
[CrossRef]

Thai, S.

S. Thai, M. V. Schonermark, “Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS),” Int. J. Remote Sens. 19, 3223–3236 (1998).
[CrossRef]

Thomas, G. E.

G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, 1999).
[CrossRef]

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Tsay, S. C.

Tsay, S.-C.

M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, K. Jayaweera, “A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef] [PubMed]

S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Rep. (Cooperative Institute for Research in the Atmosphere, Boulder, Colo., 1990).

Uccellini, L. W.

D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

Vane, G.

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Vesperini, M.

M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999).
[CrossRef]

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).

Wald, A.

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Weng, F. Z.

R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
[CrossRef]

Wiscombe, W. J.

Yan, B.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (2)

Bull. Am. Meteorol. Soc. (1)

R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996).
[CrossRef]

IEEE J. Geosci. Remote Sens. (1)

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE J. Geosci. Remote Sens. 23, 525–633 (1985).

IEEE Trans. Geosci. Remote Sens. (4)

Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Y. J. Kaufman, B.-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999).
[CrossRef]

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989).
[CrossRef]

Int. J. Remote Sens. (1)

S. Thai, M. V. Schonermark, “Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS),” Int. J. Remote Sens. 19, 3223–3236 (1998).
[CrossRef]

J. Appl. Meteorol. (2)

R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982).
[CrossRef]

J. Clim. Appl. Meteorol. (1)

D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

J. Geophys. Res. (4)

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

B.-C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997).
[CrossRef]

B.-C. Gao, Y. Kaufman, “Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels,” J. Geophys. Res. 108, 4389, doi: (2003).
[CrossRef]

J. Geophysical Res. (1)

M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Remote Sens. Environ. (1)

C. G. Gelpi, “Removing path-scattered radiance from over-ocean spectrometer images for water vapor estimation,” Remote Sens. Environ. 74, 414–421 (2000).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (14)

G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, 1999).
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000).
[CrossRef]

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U. S. Air Force Geophysics Laboratory, 1989).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).

E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in Optical Propagation in the Atmosphere, Agard Conference Proceedings 183, (National Technical Information Service ADA 028615, 1976).

S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Rep. (Cooperative Institute for Research in the Atmosphere, Boulder, Colo., 1990).

S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).

B.-C. Gao, Y. Kaufman, “MODIS near-IR water vapor algorithm: algorithm theoretical basis document (MOD05),” NASA Algorithm Tech. Background Doc. Publ. Product ID MOD05 (NASA Goddard Space Flight Center, 1998).

C. C. Borel, W. B. Clodius, J. Johnson, “Water vapor retrieval over many surface types,” in Algorithms for Multi-spectral and Hyperspectral Imagery II, A. E. Iverson, ed., Proc. SPIE2758, 218–228 (1996).
[CrossRef]

J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.

J. P. Peixoto, A. H. Oort, Physics of Climate (American Institute of Physics, 1992), pp. 278–285.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral transmission of the mid-latitude summer atmosphere,20,21 with rural aerosol extinction (visibility 25 km), an overhead Sun, and a nadir view in the presence of water vapor. The water vapor absorption region, the MODIS NIR bands, and the spectral reflectance of snow, vegetation, soil, and water surfaces are also shown.

Fig. 2
Fig. 2

Ratio of the reflectance function curves for clear sky and for hazy skies. Ratios depicted are at (pairs, top to bottom) a weakly absorbing water vapor channel (905 nm), a moderately absorbing water vapor channel (940 nm), and a strongly absorbing water vapor channel (935 nm) to that in a nonabsorbing channel (865 nm) as a function of total precipitable water in a vertical column through the atmosphere. The solid curve in each pair is for a clear-sky case; the dotted curves are for visibilities of 10, 8, 5, 3, and 2 km. The dotted curves for the 10 and 8 km and the 3 and 2 km visibilities lie on top of each other. The lower the visibilities the further the ratio curves are from the clear-sky cases. These simulations were made for a surface albedo of 0.5, a sensor looking at nadir, and a solar zenith angle of 45°.

Fig. 3
Fig. 3

Conceptual illustration of the shadow method.

Fig. 4
Fig. 4

Ratio of the reflectance difference in the water vapor band to that in a nonabsorbing channel (865 nm) as a function of total precipitable water in the atmosphere [Eq. (14)] for clear-sky and hazy conditions. Ratios depicted are the clear minus shadow ratios at a weakly absorbing water vapor channel (905 nm), a moderately absorbing water vapor channel (940 nm), and a strongly absorbing water vapor channel (935 nm). The solid curve is for a clear-sky case, whereas the dotted curves are for visibilities of 10, 8, 5, 3, and 2 km. The dotted curves for the 10 and 8 km and the 3 and 2 km visibilities lie on top of each other. The lower the visibilities the further the ratio curves are from the clear-sky cases. These calculations were made for a surface albedo of 0.5, a sensor looking at nadir, and a solar zenith angle of 45°.

Fig. 5
Fig. 5

Difference in reflectance ratio (or transmission) of the haze cases minus the clear ratio cases depicted in Fig. 2 (Gao approach). The five ratio difference curves depicted are for visibilities of 10, 8, 5, 3, and 2 km. In all cases the lower the visibility the greater the ratio differences. The dotted curves are the differences between the clear and the hazy conditions for the reflectance ratio 905 nm/865 nm, the dashed curves are for the reflectance ratio 940 nm/865 nm, and the dashed–dotted curves are for the reflectance ratio 935 nm/865 nm.

Fig. 6
Fig. 6

Difference in reflectance ratio (or transmission) of the haze cases minus the clear ratio cases depicted in Fig. 4 (shadow approach). The five ratio difference curves depicted are for visibilities of 10, 8, 5, 3, and 2 km. In all cases the lower the visibility the more negative the ratio of differences. The dotted curves are the differences between the clear and hazy conditions for the reflectance ratio 905 nm/865 nm, the dashed curves are for the reflectance ratio 940 nm/865 nm, and the dashed–dotted curves are for the reflectance ratio 935 nm/865 nm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I λ ( θ υ , θ 0 , Δ ϕ ) = I λ , diff ( θ υ , θ 0 , Δ ϕ ) + μ 0 F 0 λ π T λ ( θ 0 ) T λ ( θ υ ) ρ λ ( θ υ , θ 0 , Δ ϕ ) ,
I λ ( θ υ , θ 0 , Δ ϕ ) = μ 0 F 0 λ π T λ ( θ 0 ) T λ ( θ υ ) ρ λ , L .
ρ λ ( θ υ , θ 0 , Δ ϕ ) I λ ( θ υ , θ 0 , Δ ϕ ) μ 0 F 0 λ = T λ ( θ 0 ) T λ ( θ υ ) ρ λ , L π ,
ρ λ * ( θ υ , θ 0 , Δ ϕ ) = π ρ λ ( θ υ , θ 0 , Δ ϕ ) = T λ ( θ 0 ) T λ ( θ υ ) ρ λ , L T λ tot ( θ υ , θ 0 ) ρ λ , L ,
T 1 tot ( θ υ , θ 0 ) T 2 tot ( θ υ , θ 0 ) = ρ 1 * ( θ υ , θ 0 , Δ ϕ ) / ρ 1 , L ρ 2 * ( θ υ , θ 0 , Δ ϕ ) / ρ 2 , L .
T w tot ρ 1 * ( θ υ , θ 0 , Δ ϕ ) / ρ 1 , L ρ 2 * ( θ υ , θ 0 , Δ ϕ ) / ρ 2 , L .
ρ λ , tot ( θ υ , θ 0 , Δ ϕ ) = ρ λ , black ( θ υ , θ 0 , Δ ϕ ) + T λ ( θ 0 , 2 π ) T ¯ λ ( θ υ , 2 π ) ρ λ , L π ( 1 ρ ¯ λ ρ λ , L ) ,
ρ λ , tot ( θ υ , θ 0 , Δ ϕ ) = ρ λ , black ( θ υ , θ 0 , Δ ϕ ) + T λ ( θ 0 , 2 π ) T λ ( θ υ , 2 π ) ρ λ , L π .
ρ λ , tot * ( θ υ , θ 0 , Δ ϕ ) = π ρ λ , black ( θ υ , θ 0 , Δ ϕ ) + T λ ( θ 0 , 2 π ) T ¯ λ ( θ υ , 2 π ) ρ λ , L 1 ρ ¯ λ ρ λ , L .
ρ λ , tot * = π ρ λ , black + ( T λ + t λ ) ( T λ + t λ ) ρ λ , L 1 ρ ¯ λ ρ λ , L = π ρ λ , black + ( T λ T λ + t λ T λ + T λ t λ + t λ t λ ) ρ λ , L 1 ρ ¯ λ ρ λ , L .
ρ λ , tot * , SH = π ρ λ , black + ( t λ T λ + t λ t λ ) ρ λ , L 1 ρ ¯ λ ρ λ , L .
Δ ρ λ * ρ λ , tot * ρ λ , tot * , SH = ( T λ T λ + T λ t λ ) ρ λ , L 1 ρ ¯ λ ρ λ , L T λ , eff ρ λ , eff ,
T λ , eff T λ T λ + T λ t λ , ρ λ , eff ρ λ , L 1 ρ ¯ λ ρ λ , L .
Δ ρ 1 * / ρ 1 , eff Δ ρ 2 * / ρ 2 , eff = T 1 , eff T 2 , eff ,
T w tot Δ ρ 1 * / ρ 1 , eff Δ ρ 2 * / ρ 2 , eff = Δ ρ 1 * Δ ρ 2 * ,

Metrics