Abstract

Techniques aimed at retrieving water vapor from satellite data of reflected near-infrared solar radiation have progressed significantly in recent years. These techniques rely on observation of water vapor attenuation of near-infrared solar radiation reflected by the Earth’s surface. Ratios of measured radiances at wavelengths inside and outside water vapor absorbing channels are used for retrieval purposes. These ratios partially remove the dependence of surface reflectance on wavelength and are used to retrieve the total column water vapor amount. Hazy atmospheric conditions, however, introduce errors into this widely used technique. A new method based on radiance differences between clear and nearby shadowed surfaces, combined with ratios between water vapor absorbing and window regions, is presented that improves water vapor retrievals under hazy atmospheric conditions. Radiative transfer simulations are used to demonstrate the advantage offered by this technique.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription