Abstract

We present a novel optical current sensor based on the Faraday effect that incorporates a temperature monitoring system. The monitoring element is a temperature-dependent birefringent plate placed at the Faraday sensor head. Measurement of the plate retardation permits compensation for the temperature dependence of the Verdet constant. Validation experiments are presented and discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. P. Barnes, L. B. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
    [CrossRef]
  2. P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
    [CrossRef]
  3. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  4. K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
    [CrossRef]

2005

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

1995

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

1992

1991

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Barnes, N. P.

Bohnert, K.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Brändle, H.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Day, G. W.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Gabbus, P.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Kostovic, J.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Petway, L. B.

Rose, A. H.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Williams, P. A.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Electron. Lett.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lasers Eng.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Rev. Sci. Instrum.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Architecture of the proposed current sensor.

Fig. 2
Fig. 2

Measured retardance of the birefringent plate versus temperature of the sensor head.

Fig. 3
Fig. 3

Sensor output versus temperature for an applied current of 100 A: filled triangles, uncompensated measurement; open circles, compensated measurement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) ( I 0 / 2 ) [ 1 + 2 V ( T ) k i ( t ) ] ,
I 1 , 2 ( t ) = ( I 0 / 4 ) [ 1 + 2 V ( T ) k i ( t ) ] [ 1 ± cos δ ( T ) ] ,
i ( t ) = i 0 cos ( 2 π f 0 t ) + odd harmonics ,
I 1 , 2 ( dc ) ( I 0 / 4 ) [ 1 ± cos δ ( T ) ] ,
I 1 , 2 ( f 0 ) ( I 0 / 2 ) V ( T ) k i 0 [ 1 ± cos δ ( T ) ] ,
I 1 , 2 ( f 0 ) I 1 , 2 ( dc ) 2 V ( T ) k i 0 ,
δ ( T ) = arccos ( I 1 I 2 I 1 + I 2 ) .

Metrics