Abstract

We present a novel optical current sensor based on the Faraday effect that incorporates a temperature monitoring system. The monitoring element is a temperature-dependent birefringent plate placed at the Faraday sensor head. Measurement of the plate retardation permits compensation for the temperature dependence of the Verdet constant. Validation experiments are presented and discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. P. Barnes, L. B. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
    [CrossRef]
  2. P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
    [CrossRef]
  3. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  4. K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
    [CrossRef]

2005 (1)

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

1995 (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

1992 (1)

1991 (1)

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Barnes, N. P.

Bohnert, K.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Brändle, H.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Day, G. W.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Gabbus, P.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Kostovic, J.

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Petway, L. B.

Rose, A. H.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Williams, P. A.

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

Electron. Lett. (1)

P. A. Williams, G. W. Day, A. H. Rose, “Compensation for temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors,” Electron. Lett. 27, 1131–1132 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lasers Eng. (1)

K. Bohnert, P. Gabbus, J. Kostovic, H. Brändle, “Optical sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Architecture of the proposed current sensor.

Fig. 2
Fig. 2

Measured retardance of the birefringent plate versus temperature of the sensor head.

Fig. 3
Fig. 3

Sensor output versus temperature for an applied current of 100 A: filled triangles, uncompensated measurement; open circles, compensated measurement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) ( I 0 / 2 ) [ 1 + 2 V ( T ) k i ( t ) ] ,
I 1 , 2 ( t ) = ( I 0 / 4 ) [ 1 + 2 V ( T ) k i ( t ) ] [ 1 ± cos δ ( T ) ] ,
i ( t ) = i 0 cos ( 2 π f 0 t ) + odd harmonics ,
I 1 , 2 ( dc ) ( I 0 / 4 ) [ 1 ± cos δ ( T ) ] ,
I 1 , 2 ( f 0 ) ( I 0 / 2 ) V ( T ) k i 0 [ 1 ± cos δ ( T ) ] ,
I 1 , 2 ( f 0 ) I 1 , 2 ( dc ) 2 V ( T ) k i 0 ,
δ ( T ) = arccos ( I 1 I 2 I 1 + I 2 ) .

Metrics