Abstract

Using the differential theory of light diffraction by finite cylindrical objects, we study light transmission through a small circular aperture in a metallic screen with concentric corrugation around the nanohole. Poynting vector maps in the region below the screen show that the field enhancement compared with an unstructured aperture is obtained with corrugation lying on the entrance face of the screen. Corrugation on the exit face leads to a more directional radiation close to the normal to the screen. The spectral dependence of the transmission shows a sharp maximum linked with surface plasmon excitation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. U. Schröter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421 (1998).
    [CrossRef]
  3. M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
    [CrossRef]
  4. J. A. Porto, F. T. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  5. T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
    [CrossRef]
  6. Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
    [CrossRef]
  7. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  8. Q. Cao, Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  9. H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  10. E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
    [CrossRef]
  11. S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
    [CrossRef]
  12. L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  13. L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
    [CrossRef] [PubMed]
  14. A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
    [CrossRef]
  15. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
    [CrossRef]
  16. M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).
  17. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
    [CrossRef]
  18. A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  19. A. Diez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
    [CrossRef]
  20. A. R. Zakharian, M. Mansuripur, J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12, 2631–2648 (2004).
    [CrossRef] [PubMed]
  21. R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
    [CrossRef]
  22. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
    [CrossRef] [PubMed]
  23. T. Vallius, J. Turunen, M. Mansuripur, S. Honkanen, “Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons,” J. Opt. Soc. Am. A 21, 456–463 (2004).
    [CrossRef]
  24. S. Guha, G. D. Gillen, “Description of light propagation through a circular aperture using nonparaxial vector diffraction theory,” Opt. Express 13, 1425–1447 (2005).
    [CrossRef]
  25. Ch. Hafner, The Generalized Multipole Technique for Computation Electromagnetics (Artech House, 1990).
  26. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
    [CrossRef]
  27. N. Bonod, E. Popov, M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
    [CrossRef]
  28. N. Bonod, E. Popov, M. Nevière, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
    [CrossRef]
  29. E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
    [CrossRef]
  30. E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
    [CrossRef] [PubMed]
  31. W. C. Chew, L. Gurel, “Reflection and transmission operators for strips or disks embedded in homogeneous and layered media,” IEEE Trans. Microwave Theory Tech. 36, 1488–1497 (1988).
    [CrossRef]
  32. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).
  33. V. A. Kosobukin, “Polarization and resonance effects in optical initiation of cylindrical surface-polaritons and periodic structures,” Fiz. Tverd. Tela (Leningrad) 35, 884–898 (1993).
  34. P. J. Valle, E. M. Ortiz, J. M. Saiz, “Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation,” Opt. Commun. 137, 334–342 (1997).
    [CrossRef]
  35. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
    [CrossRef]
  36. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), Chap. 5.
    [CrossRef]
  37. M. Nevière, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, 2000), and references therein.
  38. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]

2005 (5)

S. Guha, G. D. Gillen, “Description of light propagation through a circular aperture using nonparaxial vector diffraction theory,” Opt. Express 13, 1425–1447 (2005).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[CrossRef]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[CrossRef] [PubMed]

2004 (5)

T. Vallius, J. Turunen, M. Mansuripur, S. Honkanen, “Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons,” J. Opt. Soc. Am. A 21, 456–463 (2004).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

A. R. Zakharian, M. Mansuripur, J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12, 2631–2648 (2004).
[CrossRef] [PubMed]

2002 (5)

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

Q. Cao, Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

2001 (4)

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
[CrossRef]

2000 (2)

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

1999 (3)

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
[CrossRef]

J. A. Porto, F. T. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

A. Diez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

1998 (4)

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

U. Schröter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1997 (1)

P. J. Valle, E. M. Ortiz, J. M. Saiz, “Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation,” Opt. Commun. 137, 334–342 (1997).
[CrossRef]

1993 (1)

V. A. Kosobukin, “Polarization and resonance effects in optical initiation of cylindrical surface-polaritons and periodic structures,” Fiz. Tverd. Tela (Leningrad) 35, 884–898 (1993).

1988 (1)

W. C. Chew, L. Gurel, “Reflection and transmission operators for strips or disks embedded in homogeneous and layered media,” IEEE Trans. Microwave Theory Tech. 36, 1488–1497 (1988).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Andrés, M. V.

Astilean, S.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bonod, N.

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[CrossRef] [PubMed]

N. Bonod, E. Popov, M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[CrossRef]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Cao, Q.

Q. Cao, Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Chang, S. H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Chaumet, P.

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

Chew, W. C.

W. C. Chew, L. Gurel, “Reflection and transmission operators for strips or disks embedded in homogeneous and layered media,” IEEE Trans. Microwave Theory Tech. 36, 1488–1497 (1988).
[CrossRef]

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).

Cruz, J. L.

de Fornel, F.

L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

Diez, A.

Ebbesen, T W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Ebbesen, T. W.

A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Enoch, S.

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

Fehrembach, A.-L.

Garcia de Abajo, F. J.

Garcia Vidal, F. J.

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

Garcia-Vidal, F. T.

J. A. Porto, F. T. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Garcia-Vidal, J. J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gillen, G. D.

S. Guha, G. D. Gillen, “Description of light propagation through a circular aperture using nonparaxial vector diffraction theory,” Opt. Express 13, 1425–1447 (2005).
[CrossRef]

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Guha, S.

S. Guha, G. D. Gillen, “Description of light propagation through a circular aperture using nonparaxial vector diffraction theory,” Opt. Express 13, 1425–1447 (2005).
[CrossRef]

Gurel, L.

W. C. Chew, L. Gurel, “Reflection and transmission operators for strips or disks embedded in homogeneous and layered media,” IEEE Trans. Microwave Theory Tech. 36, 1488–1497 (1988).
[CrossRef]

Hafner, Ch.

Ch. Hafner, The Generalized Multipole Technique for Computation Electromagnetics (Artech House, 1990).

Heitmann, D.

U. Schröter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421 (1998).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Honkanen, S.

Hugonin, J. P.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Kim, T. J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Kosobukin, V. A.

V. A. Kosobukin, “Polarization and resonance effects in optical initiation of cylindrical surface-polaritons and periodic structures,” Fiz. Tverd. Tela (Leningrad) 35, 884–898 (1993).

Krishman, A.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Lalanne, Ph.

Q. Cao, Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Lenne, P.-F.

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Lezec, H. L.

A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Lopez-Rios, T.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Mansuripur, M.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Mendoza, D.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Möller, K. D.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Moloney, J. V.

Nevière, M.

N. Bonod, E. Popov, M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
[CrossRef]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[CrossRef]

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[CrossRef] [PubMed]

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

M. Nevière, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, 2000), and references therein.

Ortiz, E. M.

P. J. Valle, E. M. Ortiz, J. M. Saiz, “Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation,” Opt. Commun. 137, 334–342 (1997).
[CrossRef]

Palamaru, M.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Pannetier, B.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. T. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Popov, E.

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[CrossRef] [PubMed]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
[CrossRef]

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

M. Nevière, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, 2000), and references therein.

Porto, J. A.

J. A. Porto, F. T. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Reinisch, R.

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

M. Nevière, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, 2000), and references therein.

Rigneault, H.

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Saiz, J. M.

P. J. Valle, E. M. Ortiz, J. M. Saiz, “Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation,” Opt. Commun. 137, 334–342 (1997).
[CrossRef]

Salomon, L.

L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

Sanchez-Dehesa, J.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Schröter, U.

U. Schröter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421 (1998).
[CrossRef]

Thio, T.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
[CrossRef]

Turunen, J.

Valle, P. J.

P. J. Valle, E. M. Ortiz, J. M. Saiz, “Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation,” Opt. Commun. 137, 334–342 (1997).
[CrossRef]

Vallius, T.

Vitrant, G.

M. Nevière, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, 2000), and references therein.

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Wannemacher, R.

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Wolf, P. A.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yamamoto, N.

A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Zakharian, A. R.

Zayats, A.

L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 12, 2332–2337 (2005).
[CrossRef]

E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004).
[CrossRef]

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Fiz. Tverd. Tela (Leningrad) (1)

V. A. Kosobukin, “Polarization and resonance effects in optical initiation of cylindrical surface-polaritons and periodic structures,” Fiz. Tverd. Tela (Leningrad) 35, 884–898 (1993).

IEEE Trans. Microwave Theory Tech. (1)

W. C. Chew, L. Gurel, “Reflection and transmission operators for strips or disks embedded in homogeneous and layered media,” IEEE Trans. Microwave Theory Tech. 36, 1488–1497 (1988).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun. (5)

A. Degiron, H. L. Lezec, N. Yamamoto, T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

N. Bonod, E. Popov, M. Nevière, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[CrossRef]

P. J. Valle, E. M. Ortiz, J. M. Saiz, “Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation,” Opt. Commun. 137, 334–342 (1997).
[CrossRef]

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (4)

U. Schröter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421 (1998).
[CrossRef]

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

Phys. Rev. Lett. (5)

Q. Cao, Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

J. A. Porto, F. T. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 207, 820–822 (2002).
[CrossRef]

Other (6)

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

M. Nevière, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, 2000), and references therein.

Ch. Hafner, The Generalized Multipole Technique for Computation Electromagnetics (Artech House, 1990).

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
[CrossRef]

M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representations of the microstructured nanoaperture inside a plane metallic screen. (a) General view of the three systems under study. (b) Cross section of the right-hand side of (a) with definition of groove dimensions.

Fig. 2
Fig. 2

Dependence on x of the modulus of the z component of the electric field diffracted above (z = t) and below (z = 0) a 50 nm radius circular aperture in a t = 400 nm thick silver layer. Normally incident light is polarized along the x axis and has wavelength λ = 500 nm. The dotted curve, which represents properly normalized Hankel function H1+(kpx) with kp = 1.068(2π/λ), corresponds to constant plasmon propagation along the silver–air interface.

Fig. 3
Fig. 3

Maps of 2πPz,mean as a function of r and z for an aperture with R1 = 50 nm with two-sided corrugation, as shown in the lowest part of Fig. 1(a), and including (a) no grooves, (b) two grooves, and (c) four grooves. Silver layer with optical index equal to 0.5 + i2.87; total layer thickness, t = 400 nm; groove depth, h = 40 nm; wavelength, λ = 500 nm.

Fig. 4
Fig. 4

Decrease of 2πPz,mean along the negative part of the z axis for the device with two-sided corrugation as described in Fig. 3.

Fig. 5
Fig. 5

Decrease of 2πPz,mean as a function of r, calculated at z = −1 µm, for the device with two-sided corrugation as described in Fig. 3.

Fig. 6
Fig. 6

Map of 2πPz ,mean as a function of r and z for a four-groove corrugation made on the exit face only, as shown in the middle part of Fig. 1(a). The optogeometrical parameters are the same as in Fig. 3.

Fig. 7
Fig. 7

Map of 2πPz,mean as a function of r and z for a four-groove corrugation made on the entrance face only, as shown in the top part of Fig. 1(a). The optogeometrical parameters are the same as in Fig. 3.

Fig. 8
Fig. 8

Power flux transmitted through a horizontal circle with 5 µm radius as a function of groove depth h for two positions of the circle, z = −5 and z = −10 µm. Two-sided four-groove corrugation with the radii listed in Table 1; total thickness, t = 400 nm; aperture radius, 50 nm.

Fig. 9
Fig. 9

Comparison of transmission factors for three systems. The transmission factor is equal to transmitted flux Φ through a horizontal circle with 5 µm radius and situated at z = −5 µm, normalized by incident flux Φi through the same circle situated above the aperture. Dotted curve, transmission through two-sided corrugation given in Fig. 8 and presented as a function of the residual thickness of the layer at the groove bottom, equal to t − 2h. Solid line, transmission through a plane silver layer as a function of layer thickness. Dashed curve, transmission through a single circular aperture with a radius of 50 nm in a silver layer, presented as a function of the layer thickness.

Fig. 10
Fig. 10

Spectral dependence of the enhancement factor of the transmittivity for two-sided, four-groove corrugation, sketched in the lowest part of Fig. 1(a) and with groove depth h = 40 nm; total layer thickness, t = 400 nm; aperture radius, 50 nm; and groove walls situated according to Table 1.

Tables (1)

Tables Icon

Table 1 Values of the Corrugation Wall Positions (in nm) Defined in Fig. 1(b) and Optimized to Plasmon Excitation on a Silver–Air = Surface at λ = 500 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P z , mean ( r , z ) = 0 2 π P z ( r , θ , z ) d θ / 2 π .

Metrics