Abstract

We demonstrate the sensitivity of Bragg gratings in a multicore fiber to transverse load. The Bragg peaks are split because of stress-induced birefringence, the magnitude of which depends upon the load and grating position relative to the load axis. Experiments show that a set of gratings in a four-core fiber can measure a load axis angle to ±5° and a load magnitude to ±15 N m−1 up to 2500 N m−1. We consider alternative designs of multicore fiber for optimal load sensing and compare experimental and modeled data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Gianino, B. Bendow, “Calculations of stress-induced changes in the transverse refractive-index profile of optical fibers,” Appl. Opt. 20, 430–434 (1981).
    [CrossRef] [PubMed]
  2. K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
    [CrossRef]
  3. K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
    [CrossRef]
  4. J. A. Guemes, J. M. Menéndez, “Response of Bragg grating fiber-optic sensors when embedded in composite laminates,” Compos. Sci. Technol. 62, 959–966 (2002).
    [CrossRef]
  5. C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
    [CrossRef]
  6. I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
    [CrossRef]
  7. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
    [CrossRef]
  8. M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. C. Jones, D. Zhao, L. Zhang, I. Bennion, “Differential birefringence in multicore fiber Bragg gratings under transverse stress,” Opt. Lett. 29, 2225–2227 (2004).
    [CrossRef] [PubMed]
  9. B. Rosinski, J. W. D. Chi, P. Grosso, J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 17, 807–810 (1999).
    [CrossRef]
  10. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
    [CrossRef]
  11. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28, 387–389 (2003).
    [CrossRef] [PubMed]
  12. M. Frocht, Photoelasticity (Wiley, 1948), Vol. 2.
  13. R. Gafsi, M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
    [CrossRef]

2004

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. C. Jones, D. Zhao, L. Zhang, I. Bennion, “Differential birefringence in multicore fiber Bragg gratings under transverse stress,” Opt. Lett. 29, 2225–2227 (2004).
[CrossRef] [PubMed]

2003

2002

J. A. Guemes, J. M. Menéndez, “Response of Bragg grating fiber-optic sensors when embedded in composite laminates,” Compos. Sci. Technol. 62, 959–966 (2002).
[CrossRef]

2001

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

2000

R. Gafsi, M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

1999

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
[CrossRef]

B. Rosinski, J. W. D. Chi, P. Grosso, J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 17, 807–810 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

1993

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

1981

P. D. Gianino, B. Bendow, “Calculations of stress-induced changes in the transverse refractive-index profile of optical fibers,” Appl. Opt. 20, 430–434 (1981).
[CrossRef] [PubMed]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Abe, I.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Ainslie, B. J.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Armitage, J. R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Barton, J. S.

Bendow, B.

Bennett, T.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
[CrossRef]

Bennion, I.

Campbell, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Cantwell, W. J.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Chalker, P. R.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Chi, J. W. D.

Edahiro, T.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

El-Sherif, M. A.

R. Gafsi, M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Flockhart, G. M. H.

Frazão, O.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Frocht, M.

M. Frocht, Photoelasticity (Wiley, 1948), Vol. 2.

Gafsi, R.

R. Gafsi, M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Gianino, P. D.

Grosso, P.

Guemes, J. A.

J. A. Guemes, J. M. Menéndez, “Response of Bragg grating fiber-optic sensors when embedded in composite laminates,” Compos. Sci. Technol. 62, 959–966 (2002).
[CrossRef]

Hosaka, T.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Jones, J. D. C.

Kalinowski, H. J.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Kashyap, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Kenny, R.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Kuang, K. S. C.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Lawrence, C. M.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
[CrossRef]

Le Bihan, J.

Li, C.

Liu, Y.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

MacPherson, W. N.

Menéndez, J. M.

J. A. Guemes, J. M. Menéndez, “Response of Bragg grating fiber-optic sensors when embedded in composite laminates,” Compos. Sci. Technol. 62, 959–966 (2002).
[CrossRef]

Moore, A. J.

Nelson, D. V.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
[CrossRef]

Nogueira, R. N.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Okamoto, K.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Pinto, J. L.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Rosinski, B.

Santos, J. L.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Silva-Lopez, M.

Udd, E.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
[CrossRef]

Whelan, M. P.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Williams, D. L.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Williams, J. A. R.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Zhang, L.

Zhao, D.

Appl. Opt.

Compos. Sci. Technol.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker “Embedded fibre Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

J. A. Guemes, J. M. Menéndez, “Response of Bragg grating fiber-optic sensors when embedded in composite laminates,” Compos. Sci. Technol. 62, 959–966 (2002).
[CrossRef]

Electron. Lett.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Exp. Mech.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 202–209 (1999).
[CrossRef]

IEEE J. Quantum Electron.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

I. Abe, H. J. Kalinowski, O. Frazão, J. L. Santos, R. N. Nogueira, J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
[CrossRef]

Opt. Fiber Technol.

R. Gafsi, M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Opt. Lett.

Other

M. Frocht, Photoelasticity (Wiley, 1948), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

MCF cross section. The core spacing is 50 µm.

Fig. 2
Fig. 2

Calculated attenuation due to angular misalignment between two MCFs.

Fig. 3
Fig. 3

Front face of the MCF in a fiber connector. Inset shows the position of the cores with respect to the connector keyway.

Fig. 4
Fig. 4

Reflected FBG spectra from two MCF cores showing peak splitting under an increasing transverse load.

Fig. 5
Fig. 5

Interrogation system with selectable addressing of the four MCF cores.

Fig. 6
Fig. 6

Measurements of peak splitting versus load at θ = 15°.

Fig. 7
Fig. 7

FBG spectra for two orientations of MCF under a transverse load of 205 N compared with zero load (top).

Fig. 8
Fig. 8

Theoretical curve (solid curve) and experimental data (points) for the stress difference ratio of two cores at 90° separation.

Fig. 9
Fig. 9

Top, experimentally recovered angle of load axis versus the set angle. Bottom, residuals of the linear fit.

Fig. 10
Fig. 10

Theoretical stress pattern of the MCF compressed by two diametrically opposite flat plates. The dotted circle shows the loci of points at which the cores sample the stress field.

Fig. 11
Fig. 11

Throughout the fiber cross section the horizontal normal stress σx is always positive or tensile and the vertical normal stress σy is negative or compressive. The dashed vertical lines indicate the radial location of the cores.

Fig. 12
Fig. 12

Theoretical curve and experimental points of the stress difference ratio of the two first cores in a three-core fiber.

Fig. 13
Fig. 13

Stress difference ratio simulated for the core pairs 1 and 2 (solid curve), 1 and 3 (dashed curve), 2 and 3 (dotted curve).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R = ( d Δ λ d F ) i / ( d Δ λ d F ) j ,
n x n y = n 3 2 E [ p 11 p 12 + ν ( p 11 p 12 ) ] ( σ x σ y ) = C ( σ x σ y ) ,
( σ x σ y ) 1 ( σ x σ y ) 2 = σ x ( θ ) σ y ( θ ) σ x ( θ + π 2 ) σ y ( θ + π 2 ) .
R = ( λ x λ y ) 1 ( λ x λ y ) 2 = σ x ( θ ) σ y ( θ ) σ x ( θ + π 2 ) σ y ( θ + π 2 ) .
σ x σ y = F L f ( θ ) ,
F L = f 1 ( θ ) 2 Λ C ( λ x λ y ) ,

Metrics