Abstract

Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Baumeister, “Design of multilayer filters by successive approximations,” J. Opt. Soc. Am. 48, 955–958 (1958).
    [CrossRef]
  2. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1986).
    [CrossRef]
  3. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1988).
  4. S. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).
  5. J. A. Dobrowolski, Optical Properties of Films and Coatings (McGraw-Hill, 1994), Chap. 42 pp. 42.3–42.130.
  6. A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ., Fiz., Astron. 23, 91–93 (1982).
  7. A. V. Tikhonravov, M. K. Trubetskov, G. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
    [CrossRef] [PubMed]
  8. B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35, 5484–5492 (1996).
    [CrossRef] [PubMed]
  9. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 312–321 (2003).
    [CrossRef]
  10. A. V. Tikhonravov, “Design of optical coatings,” in Optical Interference Coatings, N. Kaiser, H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 81–104.
    [CrossRef]
  11. D. Poitras, J. A. Dobrowolski, T. Cassidy, S. Moisa, “Ion-beam etching for the precise manufacture of optical coatings,” Appl. Opt. 42, 4037–4044 (2003).
    [CrossRef] [PubMed]
  12. P. Ma, J. A. Dobrowolski, F. Lin, C. Midwinter, C. T. McElroy, “Long-wavelength polarizing cutoff filters for the 275–550-nm spectral region,” Appl. Opt. 41, 3218–3223 (2002).
    [CrossRef] [PubMed]
  13. U. Schulz, U. B. Schallenberg, N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41, 3107–3110 (2002).
    [CrossRef] [PubMed]
  14. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings: I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [CrossRef] [PubMed]
  15. C. Clark, H. A. Macleod, “Errors and tolerances in optical coatings,” in Proceedings of the 40th Annual Technical Conference (Society of Vacuum Coaters, 1997), pp. 274–279.
  16. J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).
  17. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
    [CrossRef]
  18. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef] [PubMed]
  19. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
    [CrossRef]
  20. H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
    [CrossRef]
  21. B. Vidal, “Change of optical properties during the monitoring of quarter wave multilayers,” Opt. Commun. 31, 259–262 (1979).
    [CrossRef]
  22. X. Zhang, W. Zhu, X. Li, Q. Chen, “Computer simulation of optical coating deposition monitored by transmission turning point,” in International Conference on Industrial Lasers, F. Gan, H. Weber, Z. Li, Q. Chen, eds., Proc. SPIE3862, 333–336 (1999).
  23. H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
    [CrossRef]
  24. A. V. Tikhonravov, M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002).
    [CrossRef] [PubMed]
  25. A. V. Tikhonravov, M. K. Trubetskov, A. Thelen, G. W. DeBell, “Thin film telecommunication filters: automated design and pre-production analysis of WDM filters,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE Press, 2002), pp. 202–207.
    [CrossRef]
  26. B. Vidal, A Fornier, E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978).
    [CrossRef] [PubMed]
  27. B. Vidal, A. Fornier, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
    [PubMed]
  28. B. Vidal, E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors,” Appl. Opt. 18, 3857–3862 (1979).
    [PubMed]
  29. D. Ristau, T. Gross, M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE1.
  30. M. Lappschies, B. Görtz, D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion beam sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series, (Optical Society of America, 2004), p. TuE4.
  31. S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.
  32. M. List, C. Melde, C. Köckert, “On-line control of the deposition of optical coatings by magnetron sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE7.
  33. A. V. Tikhonravov, M. K. Trubetskov, OptiReOpt software, http://www.optilayer.com .
  34. A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Thin Film software, http://www.optilayer.com .

2003

2002

1996

1992

1982

A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ., Fiz., Astron. 23, 91–93 (1982).

1981

1979

1978

1977

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

1974

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

1972

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

1958

Amotchkina, T. V.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 312–321 (2003).
[CrossRef]

Baumeister, P.

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Cassidy, T.

Chen, Q.

X. Zhang, W. Zhu, X. Li, Q. Chen, “Computer simulation of optical coating deposition monitored by transmission turning point,” in International Conference on Industrial Lasers, F. Gan, H. Weber, Z. Li, Q. Chen, eds., Proc. SPIE3862, 333–336 (1999).

Clark, C.

C. Clark, H. A. Macleod, “Errors and tolerances in optical coatings,” in Proceedings of the 40th Annual Technical Conference (Society of Vacuum Coaters, 1997), pp. 274–279.

DeBell, G.

DeBell, G. W.

A. V. Tikhonravov, M. K. Trubetskov, A. Thelen, G. W. DeBell, “Thin film telecommunication filters: automated design and pre-production analysis of WDM filters,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE Press, 2002), pp. 202–207.
[CrossRef]

Dobrowolski, J. A.

Fornier, A

Fornier, A.

B. Vidal, A. Fornier, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
[PubMed]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Furman, S.

S. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).

Gäbler, D.

S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.

Görtz, B.

M. Lappschies, B. Görtz, D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion beam sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series, (Optical Society of America, 2004), p. TuE4.

Gross, T.

D. Ristau, T. Gross, M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE1.

Kaiser, N.

U. Schulz, U. B. Schallenberg, N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41, 3107–3110 (2002).
[CrossRef] [PubMed]

S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.

Köckert, C.

M. List, C. Melde, C. Köckert, “On-line control of the deposition of optical coatings by magnetron sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE7.

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 312–321 (2003).
[CrossRef]

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Kruschwitz, J.

J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).

Lappschies, M.

M. Lappschies, B. Görtz, D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion beam sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series, (Optical Society of America, 2004), p. TuE4.

D. Ristau, T. Gross, M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE1.

Leitel, R.

S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.

Li, X.

X. Zhang, W. Zhu, X. Li, Q. Chen, “Computer simulation of optical coating deposition monitored by transmission turning point,” in International Conference on Industrial Lasers, F. Gan, H. Weber, Z. Li, Q. Chen, eds., Proc. SPIE3862, 333–336 (1999).

Lin, F.

List, M.

M. List, C. Melde, C. Köckert, “On-line control of the deposition of optical coatings by magnetron sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE7.

Ma, P.

Macleod, H. A.

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

C. Clark, H. A. Macleod, “Errors and tolerances in optical coatings,” in Proceedings of the 40th Annual Technical Conference (Society of Vacuum Coaters, 1997), pp. 274–279.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1986).
[CrossRef]

McElroy, C. T.

Melde, C.

M. List, C. Melde, C. Köckert, “On-line control of the deposition of optical coatings by magnetron sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE7.

Midwinter, C.

Moisa, S.

Pelletier, E.

Poitras, D.

Richmond, D.

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

Ristau, D.

M. Lappschies, B. Görtz, D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion beam sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series, (Optical Society of America, 2004), p. TuE4.

D. Ristau, T. Gross, M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE1.

Roche, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Schallenberg, U. B.

Schulz, U.

Stenzel, O.

S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.

Sullivan, B. T.

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1988).

A. V. Tikhonravov, M. K. Trubetskov, A. Thelen, G. W. DeBell, “Thin film telecommunication filters: automated design and pre-production analysis of WDM filters,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE Press, 2002), pp. 202–207.
[CrossRef]

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, G. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ., Fiz., Astron. 23, 91–93 (1982).

S. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).

A. V. Tikhonravov, M. K. Trubetskov, A. Thelen, G. W. DeBell, “Thin film telecommunication filters: automated design and pre-production analysis of WDM filters,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE Press, 2002), pp. 202–207.
[CrossRef]

A. V. Tikhonravov, “Design of optical coatings,” in Optical Interference Coatings, N. Kaiser, H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 81–104.
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 312–321 (2003).
[CrossRef]

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, G. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 312–321 (2003).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, A. Thelen, G. W. DeBell, “Thin film telecommunication filters: automated design and pre-production analysis of WDM filters,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE Press, 2002), pp. 202–207.
[CrossRef]

Vidal, B.

Wilbrandt, S.

S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.

Zhang, X.

X. Zhang, W. Zhu, X. Li, Q. Chen, “Computer simulation of optical coating deposition monitored by transmission turning point,” in International Conference on Industrial Lasers, F. Gan, H. Weber, Z. Li, Q. Chen, eds., Proc. SPIE3862, 333–336 (1999).

Zhu, W.

X. Zhang, W. Zhu, X. Li, Q. Chen, “Computer simulation of optical coating deposition monitored by transmission turning point,” in International Conference on Industrial Lasers, F. Gan, H. Weber, Z. Li, Q. Chen, eds., Proc. SPIE3862, 333–336 (1999).

Appl. Opt.

B. Vidal, A Fornier, E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978).
[CrossRef] [PubMed]

B. Vidal, A. Fornier, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
[PubMed]

B. Vidal, E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors,” Appl. Opt. 18, 3857–3862 (1979).
[PubMed]

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings: I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[CrossRef] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35, 5484–5492 (1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, G. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef] [PubMed]

U. Schulz, U. B. Schallenberg, N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41, 3107–3110 (2002).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002).
[CrossRef] [PubMed]

P. Ma, J. A. Dobrowolski, F. Lin, C. Midwinter, C. T. McElroy, “Long-wavelength polarizing cutoff filters for the 275–550-nm spectral region,” Appl. Opt. 41, 3218–3223 (2002).
[CrossRef] [PubMed]

D. Poitras, J. A. Dobrowolski, T. Cassidy, S. Moisa, “Ion-beam etching for the precise manufacture of optical coatings,” Appl. Opt. 42, 4037–4044 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Laser Focus World

J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).

Opt. Acta

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

Opt. Commun.

B. Vidal, “Change of optical properties during the monitoring of quarter wave multilayers,” Opt. Commun. 31, 259–262 (1979).
[CrossRef]

Thin Solid Films

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Vestn. Mosk. Univ., Fiz., Astron.

A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ., Fiz., Astron. 23, 91–93 (1982).

Other

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 312–321 (2003).
[CrossRef]

A. V. Tikhonravov, “Design of optical coatings,” in Optical Interference Coatings, N. Kaiser, H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 81–104.
[CrossRef]

C. Clark, H. A. Macleod, “Errors and tolerances in optical coatings,” in Proceedings of the 40th Annual Technical Conference (Society of Vacuum Coaters, 1997), pp. 274–279.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1986).
[CrossRef]

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1988).

S. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).

J. A. Dobrowolski, Optical Properties of Films and Coatings (McGraw-Hill, 1994), Chap. 42 pp. 42.3–42.130.

A. V. Tikhonravov, M. K. Trubetskov, A. Thelen, G. W. DeBell, “Thin film telecommunication filters: automated design and pre-production analysis of WDM filters,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE Press, 2002), pp. 202–207.
[CrossRef]

D. Ristau, T. Gross, M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE1.

M. Lappschies, B. Görtz, D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion beam sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series, (Optical Society of America, 2004), p. TuE4.

S. Wilbrandt, R. Leitel, D. Gäbler, O. Stenzel, N. Kaiser, “In-situ broadband monitoring and characterization of optical coatings,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE6.

M. List, C. Melde, C. Köckert, “On-line control of the deposition of optical coatings by magnetron sputtering,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), p. TuE7.

A. V. Tikhonravov, M. K. Trubetskov, OptiReOpt software, http://www.optilayer.com .

A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Thin Film software, http://www.optilayer.com .

X. Zhang, W. Zhu, X. Li, Q. Chen, “Computer simulation of optical coating deposition monitored by transmission turning point,” in International Conference on Industrial Lasers, F. Gan, H. Weber, Z. Li, Q. Chen, eds., Proc. SPIE3862, 333–336 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

General structure of the software for computational manufacturing. Arrows indicate directions of information flow.

Fig. 2
Fig. 2

Plot of a simulated deposition rate. The deposition rate is a random process with a mean rate of 4 Å/s, rms rate fluctuations of 1 Å/s, and a correlation time of 3 s.

Fig. 3
Fig. 3

Transmittance of the 19-layer theoretical design (solid curve) and ramp target transmittance (slash marks).

Fig. 4
Fig. 4

Relative errors in layer thicknesses of the computationally manufactured 19-layer coating.

Fig. 5
Fig. 5

Transmittance of the computationally manufactured 19-layer coating with thickness errors shown in Fig. 4 (dashed curve) and transmittance of the theoretical design 1 from Tables 1 and 2 (solid curve).

Fig. 6
Fig. 6

Relative errors in layer thicknesses of the computationally manufactured 23-layer coating corresponding to the theoretical design 6 in Tables 1 and 2.

Fig. 7
Fig. 7

Transmittance of the computationally manufactured 23-layer coating with thickness errors shown in Fig. 6 (dashed curve) and transmittance of the theoretical design 6 from Tables 1 and 2 (solid curve).

Fig. 8
Fig. 8

Relative errors in layer thicknesses of the computationally manufactured 19-layer coating when 1% calibration drift of transmittance measurements is simulated (see the text for details).

Fig. 9
Fig. 9

Transmittance of the computationally manufactured 19-layer coating in the case of calibration drift of transmittance measurements with the rate of 1%/1000 s (dashed curve) and theoretical transmittance of design 1 (solid curve).

Fig. 10
Fig. 10

Theoretical transmittance of design 1 (solid curve) and transmittances of three perturbed designs obtained when random errors with a 3.8% level were simulated in layer thicknesses of design 1 (dashed curves).

Tables (2)

Tables Icon

Table 1 Principal Parameters of Several Theoretical Designs with Ramp Spectral Transmittance

Tables Icon

Table 2 Physical Thicknesses (nm) of Layers of the Designs from Table 1

Metrics