Abstract

We present complete experimental determinations of the tunnel barrier parameters (two barrier heights, junction area, dielectric constant, and extrinsic series resistance) as a function of temperature for submicrometer Ni–NiO–Ni thin-film tunnel junctions, showing that when the temperature-invariant parameters are forced to be consistent, good-quality fits are obtained between I–V curves and the Simmons equation for this very-low-barrier system (measured ϕ ≈ 0.20 eV). A splitting of ≈10 meV in the barrier heights due to the different processing histories of the upper and lower electrodes is clearly shown, with the upper interface having a lower barrier, consistent with the increased effect of the image potential at a sharper material interface. It is believed that this is the first barrier height measurement with sufficient resolution for this effect to be seen. A fabrication technique that produces high yields and consistent junction behavior is presented as well as the preliminary results of inelastic tunneling spectroscopy at 4 K that show a prominent peak at ∼59 meV, shifted slightly with respect to the expected transverse optic phonon excitation in bulk NiO but consistent with other surface-sensitive experiments. We discuss the implications of these results for the design of efficient detectors for terahertz and IR radiation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
    [CrossRef]
  2. B. Michael Kale, “Electron tunneling devices in optics,” Opt. Eng. 24, 267–274 (1985).
    [CrossRef]
  3. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
    [CrossRef]
  4. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
    [CrossRef]
  5. C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
    [CrossRef]
  6. C. Fumeaux, J. Alda, G. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24, 1629–1631 (1999).
    [CrossRef]
  7. L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
    [CrossRef]
  8. J. G. Simmons, “Generalized formula for the Electric Tunnel Effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
    [CrossRef]
  9. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581–2590 (1963).
    [CrossRef]
  10. J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
    [CrossRef]
  11. M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
    [CrossRef]
  12. S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996).
    [CrossRef]
  13. J. A. Nelder, R. Mead, “A simple method for function minimization,” Comput. J. 7, 308–313 (1965).
    [CrossRef]
  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.
  15. G. A. Keefe, IBM T. J. Watson Research Center, Yorktown Heights, N.Y. 10598 (personal communication).
  16. L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
    [CrossRef]
  17. J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
    [CrossRef]
  18. D. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), pp. 12–46.
  19. E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
    [CrossRef]
  20. W. Olejniczak, M. Bieniecki, “Fine structure in differential conductance of oxidized nickel observed in a room temperature stm experiment,” Solid State Commun. 101, 877–882 (1997).
    [CrossRef]
  21. D. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), pp. 12–200.
  22. E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
    [CrossRef]
  23. E. T. Swartz, R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys. 61, 605–667 (1989).
    [CrossRef]
  24. Ref. 8, Eq. (1).

2003 (2)

L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
[CrossRef]

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

2002 (1)

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

2000 (1)

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

1999 (2)

C. Fumeaux, J. Alda, G. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24, 1629–1631 (1999).
[CrossRef]

E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
[CrossRef]

1997 (1)

W. Olejniczak, M. Bieniecki, “Fine structure in differential conductance of oxidized nickel observed in a room temperature stm experiment,” Solid State Commun. 101, 877–882 (1997).
[CrossRef]

1996 (2)

S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

1994 (1)

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

1989 (1)

E. T. Swartz, R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys. 61, 605–667 (1989).
[CrossRef]

1985 (1)

B. Michael Kale, “Electron tunneling devices in optics,” Opt. Eng. 24, 267–274 (1985).
[CrossRef]

1981 (1)

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

1978 (2)

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
[CrossRef]

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
[CrossRef]

1974 (1)

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

1965 (1)

J. A. Nelder, R. Mead, “A simple method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

1963 (2)

J. G. Simmons, “Generalized formula for the Electric Tunnel Effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581–2590 (1963).
[CrossRef]

Alda, J.

Asen-Palmer, M.

E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
[CrossRef]

Bachner, F. J.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Balakrishnan, G.

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Bieniecki, M.

W. Olejniczak, M. Bieniecki, “Fine structure in differential conductance of oxidized nickel observed in a room temperature stm experiment,” Solid State Commun. 101, 877–882 (1997).
[CrossRef]

Boreman, G.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

C. Fumeaux, J. Alda, G. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24, 1629–1631 (1999).
[CrossRef]

Buchanan, J. D. R.

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

Carara, M.

L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
[CrossRef]

Chung, E. M. L.

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Codreanu, I.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Davis, C. F.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
[CrossRef]

De Natale, P.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Dorneles, L. S.

L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
[CrossRef]

Elchinger, G. M.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.

Fumeaux, C.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

C. Fumeaux, J. Alda, G. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24, 1629–1631 (1999).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Gmelin, E.

E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
[CrossRef]

Gonzalez, F.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Grabbe, P.

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

Gritz, M.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Gustafson, T. K.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
[CrossRef]

Hase, T. P. A.

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

Heiblum, M.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
[CrossRef]

Herrmann, W.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Hicken, R. J.

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

Howard, R. E.

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

Hu, E. L.

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

Hughes, N. D.

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

Ivanov, A.

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Jackel, L. D.

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

Javan, A.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
[CrossRef]

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Kale, B. Michael

B. Michael Kale, “Electron tunneling devices in optics,” Opt. Eng. 24, 267–274 (1985).
[CrossRef]

Keefe, G. A.

G. A. Keefe, IBM T. J. Watson Research Center, Yorktown Heights, N.Y. 10598 (personal communication).

Kneubuehl, F. K.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Korving, J.

S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996).
[CrossRef]

Lees, M. R.

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Liu, K. C.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
[CrossRef]

Masalmeh, S. K.

S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996).
[CrossRef]

Mead, R.

J. A. Nelder, R. Mead, “A simple method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Nelder, J. A.

J. A. Nelder, R. Mead, “A simple method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Olejniczak, W.

W. Olejniczak, M. Bieniecki, “Fine structure in differential conductance of oxidized nickel observed in a room temperature stm experiment,” Solid State Commun. 101, 877–882 (1997).
[CrossRef]

Oppliger, Y.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Paul, D. M.

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Pohl, R. O.

E. T. Swartz, R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys. 61, 605–667 (1989).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.

Reuther, M.

E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
[CrossRef]

Rothuizen, H.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Sanchez, A.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
[CrossRef]

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Schaefer, D. M.

L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
[CrossRef]

Schaich, W.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Schelp, L. F.

L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
[CrossRef]

Simmons, J. G.

J. G. Simmons, “Generalized formula for the Electric Tunnel Effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581–2590 (1963).
[CrossRef]

Small, J. G.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Smythe, D. L.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Stadermann, H. K. E.

S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996).
[CrossRef]

Swartz, E. T.

E. T. Swartz, R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys. 61, 605–667 (1989).
[CrossRef]

Tanner, B. K.

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

Tennant, D. M.

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.

Villar, R.

E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
[CrossRef]

Wang, S.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
[CrossRef]

Whinnery, J. R.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
[CrossRef]

Wilke, I.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Yethiraj, M.

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Appl. Phys. A (1)

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Appl. Phys. B (1)

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Appl. Phys. Lett. (4)

L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003).
[CrossRef]

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981).
[CrossRef]

J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002).
[CrossRef]

Comput. J. (1)

J. A. Nelder, R. Mead, “A simple method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978).
[CrossRef]

Infrared Phys. Technol. (1)

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

J. Appl. Phys. (3)

J. G. Simmons, “Generalized formula for the Electric Tunnel Effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581–2590 (1963).
[CrossRef]

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978).
[CrossRef]

J. Phys. D (1)

E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999).
[CrossRef]

Opt. Eng. (1)

B. Michael Kale, “Electron tunneling devices in optics,” Opt. Eng. 24, 267–274 (1985).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003).
[CrossRef]

Physica B (1)

S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996).
[CrossRef]

Rev. Mod. Phys. (1)

E. T. Swartz, R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys. 61, 605–667 (1989).
[CrossRef]

Solid State Commun. (1)

W. Olejniczak, M. Bieniecki, “Fine structure in differential conductance of oxidized nickel observed in a room temperature stm experiment,” Solid State Commun. 101, 877–882 (1997).
[CrossRef]

Other (5)

D. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), pp. 12–200.

Ref. 8, Eq. (1).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.

G. A. Keefe, IBM T. J. Watson Research Center, Yorktown Heights, N.Y. 10598 (personal communication).

D. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), pp. 12–46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scanning electron micrograph of a Ni–NiO–Ni tunnel junction fabricated by the Ge shadow-mask technique. The junction area is 0.40 ± 0.02 µm2, and each metal layer is 50 ± 5 nm thick.

Fig. 2
Fig. 2

Suspended germanium shadow mask of the type used in this work.

Fig. 3
Fig. 3

Some of the I–V curves for a junction similar to that in Fig. 2 at various temperatures. As the temperature rises, the curves become straighter.

Fig. 4
Fig. 4

Typical fitted I–V curve with residual 10(IexpIfit). This is the 156.5 V curve of Fig. 3.

Fig. 5
Fig. 5

Parameter extraction from I–V data: T = 156.5 K.

Fig. 6
Fig. 6

Tunnel junction parameters extracted from the tested junction with all parameters free. Note the general consistency of (a) the area, (c) barrier thickness, and (e) dielectric constant. These figures show scatter but no clear trend.

Fig. 7
Fig. 7

Junction parameters extracted from the same data set as before but with A, s, and K fixed. Thickness, 2.50 nm; area, 0.3 µm2; K, 8.4. Note the reduced scatter and the resemblance of Rs to the resistivity of bulk Ni.

Fig. 8
Fig. 8

Calculated responsivity of the test junction as a detector versus T. The low responsivity at 298 K (≈0.2 A/W) is due to increased metal resistance and reduced barrier heights, which can both be addressed in device design.

Fig. 9
Fig. 9

Inelastic tunneling spectra at 4 K of a sample similar to the one used in the parameter extractions, showing what appear to be transverse-optic phonon peaks of NiO.

Fig. 10
Fig. 10

One-dimensional image potential geometry.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I dc P opt = r J 4 d 2 I d V 2 .
R 0 = R s + V j I | I = 0 ,
J = J s exp { ( ϕ ¯ + e V 21 2 ) exp [ A ( ϕ ¯ + e V 21 2 ) 1 / 2 ] ( ϕ ¯ e V 21 2 ) exp [ A ( ϕ ¯ e V 21 2 ) 1 / 2 ] } ,
J s = e h ( β Δ s ) 2 ,
A = 4 π β Δ s h ( 2 m ) 1 / 2 .
C / A 0 ( K / s ) = 0.03 F / m 2
Θ J A 1 a α ,
Δ T ( 0.1 V ) 2 100 Ω ( 10 4 K / W ) = 1 K ,
D ( E x ) = exp { 4 π h ( 2 m ) 1 / 2 s 1 s 2 [ η + ϕ ( x ) E x ] 1 / 2 d x } ,
s 1 s 2 f 1 / 2 ( x ) d x f ¯ Δ s ,
D ( E x ) = exp { 4 π β Δ s h [ 2 m ( η + ϕ ¯ E x ) ] 1 / 2 } ,
β = 1 1 8 f ¯ 2 Δ s s 1 s 2 [ f ( x ) f ¯ ] 2 d x ,
V img ( x ) = e 2 4 π 0 K [ 1 2 x + n = 1 n s ( n s ) 2 x 2 1 n s ] ,
F img ( x ) = x V img ( x ) d x .
F img ( x ) = 2 F img ( s 2 ) F img ( s x ) , { x > s 2 } .
F img ( x ) = a 2 ln x α 2 [ r ( x s ) r ( x s ) ] ,
r ( y ) = 1 2 y d y n = 1 ( 1 n y 1 n ) .
r ( y ) = 1 2 y d y j = 1 ( y ) j n = 1 ( 1 n ) j + 1 .
F img ( x ) = ( e 2 4 π 0 K ) { 1 2 ln [ x ( 1 + x / s ) 1 x / s ] x s + m = 0 ( x s ) 2 m + 1 [ ζ ( 2 m + 1 ) 1 ] 2 m + 1 } , { x < s 2 } .

Metrics