Abstract

Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot. The spectral sensitivity of the detection system is determined by calibrating with an extended source of known radiance, and this sensitivity is then used to interpret the measured LII signals. Although it requires knowledge of the soot temperature, either from a numerical model of soot particle heating or experimentally determined by detecting LII signals at two different wavelengths, this technique offers a calibration-independent procedure for measuring soot volume fraction. Application of this technique to soot concentration measurements is demonstrated in a laminar diffusion flame.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).
  2. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409, 695–697 (2001).
    [CrossRef] [PubMed]
  3. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. App. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  4. L. A. Melton, “Soot diagnostics based on laser heating,” Appl Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  5. C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in 20th Symposium (International) on Combustion (Combustion Institute, 1984), pp. 1231–1237.
  6. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl Opt. 37, 1607–1616 (1998).
    [CrossRef]
  7. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
    [CrossRef]
  8. R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
    [CrossRef]
  9. R. L. Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  10. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  11. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  12. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  13. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  14. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Physi. Chem. 1993. 97, 1619–1625 (1993).
    [CrossRef]
  15. R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
    [CrossRef]
  16. P. E. Bengtsson, M. Alden, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
    [CrossRef]
  17. D. L. Hofeldt, “Real-time soot concentrationmeasurement technique for engine exhaust streams,” in International Congress and Exposition, SAE 930079 (Society of Automotive Engineers, 1993).
  18. S. Schraml, S. Will, A. Leipertz, “Simultaneous measurements of soot mass concentration and primary particle size in the exhaust of a DI Diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE 1999-01-0146 (Society of Automotive Engineers, 1999).
  19. D. R. Snelling, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Advanced Non-Intrusive Instrumentation for Propulsion Engines AGARD Conference Proceedings (AGARD, 1997), Vol. 598, pp. 23.21–23.29.
  20. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, 1996, pp. 2277–2284.
    [CrossRef]
  21. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
    [CrossRef]
  22. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
    [CrossRef]
  23. R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-micron spectral region,” Appl Opt. 23, 975–976 (1984).
    [CrossRef] [PubMed]
  24. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).
  25. J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987).
    [CrossRef]
  26. T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting (Combustion Institute, 1993), pp. 394–397.
  27. T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
    [CrossRef]
  28. M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
    [CrossRef] [PubMed]
  29. J. Nelson, “Test of a mean field theory for the optics of fractal clusters,” J. Mod. Opt. 36, 1031–1057 (1989).
    [CrossRef]
  30. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophysi. J. 186, 705–714 (1973).
    [CrossRef]
  31. U. O. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
    [CrossRef]
  32. Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
    [CrossRef]
  33. F. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).
  34. G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
    [CrossRef]
  35. D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.
  36. D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
    [CrossRef]
  37. D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
    [CrossRef]
  38. A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
    [CrossRef]
  39. F. Liu, G. J. Smallwood, D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer 93, 301–312 (2005).
    [CrossRef]
  40. K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
    [CrossRef]
  41. C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2000).
    [CrossRef]
  42. S. S. Krishnan, K. C. Lin, G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 123, 331–339 (2001).
    [CrossRef]
  43. D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
    [CrossRef]

2005 (1)

F. Liu, G. J. Smallwood, D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer 93, 301–312 (2005).
[CrossRef]

2004 (2)

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

2002 (1)

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

2001 (4)

S. S. Krishnan, K. C. Lin, G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 123, 331–339 (2001).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409, 695–697 (2001).
[CrossRef] [PubMed]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

2000 (3)

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2000).
[CrossRef]

1999 (2)

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
[CrossRef]

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

1998 (2)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl Opt. 37, 1607–1616 (1998).
[CrossRef]

1996 (1)

R. L. Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

1995 (3)

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
[CrossRef]

1994 (3)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

1993 (2)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Physi. Chem. 1993. 97, 1619–1625 (1993).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

1992 (2)

U. O. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

1989 (2)

J. Nelson, “Test of a mean field theory for the optics of fractal clusters,” J. Mod. Opt. 36, 1031–1057 (1989).
[CrossRef]

P. E. Bengtsson, M. Alden, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

1987 (1)

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987).
[CrossRef]

1986 (1)

M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
[CrossRef] [PubMed]

1984 (2)

R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-micron spectral region,” Appl Opt. 23, 975–976 (1984).
[CrossRef] [PubMed]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. App. Phys. 48, 4473–4479 (1977).
[CrossRef]

1973 (1)

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophysi. J. 186, 705–714 (1973).
[CrossRef]

Alden, M.

P. E. Bengtsson, M. Alden, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

Bengtsson, P. E.

P. E. Bengtsson, M. Alden, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

Benner, R. E.

M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
[CrossRef] [PubMed]

Botet, R.

R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).

Carvalho, M. G.

T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting (Combustion Institute, 1993), pp. 394–397.

Choi, M. Y.

R. L. Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Dasch, C. J.

C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in 20th Symposium (International) on Combustion (Combustion Institute, 1984), pp. 1231–1237.

Dietrich, D. L.

Dobbins, R. A.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. App. Phys. 48, 4473–4479 (1977).
[CrossRef]

Estrada, K. R.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Faeth, G. M.

S. S. Krishnan, K. C. Lin, G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 123, 331–339 (2001).
[CrossRef]

T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
[CrossRef]

U. O. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting (Combustion Institute, 1993), pp. 394–397.

Farias, T. L.

T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting (Combustion Institute, 1993), pp. 394–397.

Filippov, A. V.

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

Fraser, R. A.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Physi. Chem. 1993. 97, 1619–1625 (1993).
[CrossRef]

Gülder, Ö. L.

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.

Gupta, S.

Hansen, J.

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Hessler, J. P.

R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-micron spectral region,” Appl Opt. 23, 975–976 (1984).
[CrossRef] [PubMed]

Hochgreb, S.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

Hofeldt, D. L.

D. L. Hofeldt, “Real-time soot concentrationmeasurement technique for engine exhaust streams,” in International Congress and Exposition, SAE 930079 (Society of Automotive Engineers, 1993).

Hottel, H. C.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Hurd, A. J.

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987).
[CrossRef]

Iskander, M. F.

M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
[CrossRef] [PubMed]

Jacobson, M. Z.

M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409, 695–697 (2001).
[CrossRef] [PubMed]

Jensen, K. A.

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl Opt. 37, 1607–1616 (1998).
[CrossRef]

Jullien, R.

R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).

Kayes, D.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

Köylü, U. O.

T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
[CrossRef]

U. O. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

Köylü, Ü. Ö.

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting (Combustion Institute, 1993), pp. 394–397.

Krishnan, S. S.

S. S. Krishnan, K. C. Lin, G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 123, 331–339 (2001).
[CrossRef]

Lacis, A.

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Leipertz, A.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, 1996, pp. 2277–2284.
[CrossRef]

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurements of soot mass concentration and primary particle size in the exhaust of a DI Diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE 1999-01-0146 (Society of Automotive Engineers, 1999).

Levendis, Y. A.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Lin, K. C.

S. S. Krishnan, K. C. Lin, G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 123, 331–339 (2001).
[CrossRef]

Liu, F.

F. Liu, G. J. Smallwood, D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer 93, 301–312 (2005).
[CrossRef]

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.

F. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).

Martin, J. E.

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987).
[CrossRef]

Martin, S. R.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Melton, L. A.

L. A. Melton, “Soot diagnostics based on laser heating,” Appl Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

Michelsen, H. A.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

Nelson, J.

J. Nelson, “Test of a mean field theory for the optics of fractal clusters,” J. Mod. Opt. 36, 1031–1057 (1989).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Oinas, V.

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

Olson, S. C.

M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
[CrossRef] [PubMed]

Pennypacker, C. R.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophysi. J. 186, 705–714 (1973).
[CrossRef]

Pinson, J. A.

Pon, R. M.

R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-micron spectral region,” Appl Opt. 23, 975–976 (1984).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophysi. J. 186, 705–714 (1973).
[CrossRef]

Puri, R.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Richardson, T. F.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Rosner, D. E.

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

Ruedy, R.

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Sato, M.

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

Schraml, S.

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurements of soot mass concentration and primary particle size in the exhaust of a DI Diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE 1999-01-0146 (Society of Automotive Engineers, 1999).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, 1996, pp. 2277–2284.
[CrossRef]

Seitzman, J. M.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Shaddix, C. R.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Smallwood, G. J.

F. Liu, G. J. Smallwood, D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer 93, 301–312 (2005).
[CrossRef]

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
[CrossRef]

F. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.

Smyth, K. C.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Snelling, D. R.

F. Liu, G. J. Smallwood, D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer 93, 301–312 (2005).
[CrossRef]

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.

F. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).

D. R. Snelling, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Advanced Non-Intrusive Instrumentation for Propulsion Engines AGARD Conference Proceedings (AGARD, 1997), Vol. 598, pp. 23.21–23.29.

Sorensen, C. M.

C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2000).
[CrossRef]

Stagg, B. J.

F. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Physi. Chem. 1993. 97, 1619–1625 (1993).
[CrossRef]

Thomson, K. A.

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
[CrossRef]

Tian, K.

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Wainner, R. T.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Wal, R. L.

R. L. Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Wang, D.

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

Weckman, J.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, 1996, pp. 2277–2284.
[CrossRef]

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurements of soot mass concentration and primary particle size in the exhaust of a DI Diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE 1999-01-0146 (Society of Automotive Engineers, 1999).

Witze, P. O.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

Yoshida, D.

M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
[CrossRef] [PubMed]

Zhou, Z.

R. L. Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Aerosol Sci. Technol. (1)

C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2000).
[CrossRef]

AIAA J. (2)

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Appl Opt. (2)

M. F. Iskander, S. C. Olson, R. E. Benner, D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt. 25, 2514–2520 (1986).
[CrossRef] [PubMed]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt. 38, 2478–2485 (1999).
[CrossRef]

Appl Opt. (4)

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl Opt. 37, 1607–1616 (1998).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt. 40, 2443–2452 (2001).
[CrossRef]

R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-micron spectral region,” Appl Opt. 23, 975–976 (1984).
[CrossRef] [PubMed]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

Appl. Phys. B (1)

P. E. Bengtsson, M. Alden, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Astrophysi. J. (1)

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophysi. J. 186, 705–714 (1973).
[CrossRef]

Ber. Bunsenges. Physi. Chem. 1993 (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Physi. Chem. 1993. 97, 1619–1625 (1993).
[CrossRef]

Combust. Flame (1)

R. L. Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Combust. Flame (6)

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

U. O. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame 138, 195–198 (2004).
[CrossRef]

Int. J. Heat Mass Transfer (1)

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

J. App. Phys. (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. App. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Appl. Cryst. (1)

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987).
[CrossRef]

J. Heat Transfer (3)

T. L. Farias, M. G. Carvalho, U. O. Köylü, G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer 117, 152–159 (1995).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

S. S. Krishnan, K. C. Lin, G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 123, 331–339 (2001).
[CrossRef]

J. Mod. Opt. (1)

J. Nelson, “Test of a mean field theory for the optics of fractal clusters,” J. Mod. Opt. 36, 1031–1057 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

F. Liu, G. J. Smallwood, D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer 93, 301–312 (2005).
[CrossRef]

Nature (1)

M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409, 695–697 (2001).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. (1)

J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci. 97, 9875–9880 (2000).

Rev. Sci. Instrum. (1)

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum. 63, 3608–3622 (1992).
[CrossRef]

Other (9)

F. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting (Combustion Institute, 1993), pp. 394–397.

R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).

C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in 20th Symposium (International) on Combustion (Combustion Institute, 1984), pp. 1231–1237.

D. L. Hofeldt, “Real-time soot concentrationmeasurement technique for engine exhaust streams,” in International Congress and Exposition, SAE 930079 (Society of Automotive Engineers, 1993).

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurements of soot mass concentration and primary particle size in the exhaust of a DI Diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE 1999-01-0146 (Society of Automotive Engineers, 1999).

D. R. Snelling, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Advanced Non-Intrusive Instrumentation for Propulsion Engines AGARD Conference Proceedings (AGARD, 1997), Vol. 598, pp. 23.21–23.29.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, 1996, pp. 2277–2284.
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the optical setup for the calibration of absolute light intensity.

Fig. 2
Fig. 2

Two nonuniform laser fluence profiles assumed in the evaluation of the equivalent laser sheet thickness. The Gaussian profile is generated with F(x) = Fmax exp(−x2/2σ2), σ = 0.41, and Fmax = 1 mJ/mm2. The two laser fluence profiles cover the same area.

Fig. 3
Fig. 3

Variation of the equivalent laser sheet thickness with time for three primary soot particle diameters and two peak values of laser fluence.

Fig. 4
Fig. 4

Top-view schematic of the optical and detection apparatus used in the LII experiment.

Fig. 5
Fig. 5

Schematic of the coordinate system, illustrating the detection volume and the variation of the laser fluence in different directions.

Fig. 6
Fig. 6

Laser fluence profile along the detection axis in the sampled region.

Fig. 7
Fig. 7

Absolute LII signal intensities detected at 400 and 780 nm and the resultant soot temperature for a fluence of 0.376 mJ/mm2.

Fig. 8
Fig. 8

Absolute LII signal intensities detected at 400 and 780 nm and the resultant soot temperature for a fluence of 0.502 mJ/mm2.

Fig. 9
Fig. 9

Variation of the soot volume fraction measured using the present LII technique with time, at 42 mm above the burner exit and on the flame centerline for various values of laser fluence.

Fig. 10
Fig. 10

Radial soot profile at 42 mm above the burner exit and on the flame centerline in the laminar diffusion flame from two-dimensional attenuation measurements at 577 nm.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

R S ( λ , T ) = 2 c 2 h ɛ ( λ , T ) λ 5 [ exp h c k λ T - 1 ] - 1 ,
T FIL = { 1 T B + λ h k c ln [ ɛ ( λ , T FIL ) ] } - 1 .
P CAL = M 2 A AP A L u 2 R S ( λ , T FIL ) ,
V CAL = G CAL Z M 2 A AP A L u 2 λ R S ( λ , T FIL ) × Θ ( λ ) τ ( λ ) d λ ,
P p ( λ , T p ) = 8 π 3 c 2 h λ 6 [ exp ( h c k λ T p ) - 1 ] - 1 d p 3 E ( m λ ) = 48 π 2 c 2 h λ 6 [ exp ( h c k λ T p ) - 1 ] - 1 v p E ( m λ ) ,
ϕ p ( λ , T p ) = P p ( λ , T p ) v p = 48 π 2 c 2 h λ 6 [ exp ( h c k λ T p ) - 1 ] - 1 E ( m λ ) ,
P EXP = ϕ p ( λ , T p ) f v M 2 A AP w b A L 4 π u 2 .
V EXP = Z G EXP f v M 2 A AP A L 4 π u 2 w b λ ϕ p ( λ , T p ) × Θ ( λ ) τ ( λ ) d λ ,
Δ λ C = λ τ ( λ ) Θ ( λ ) d λ τ ( λ C ) Θ ( λ C ) = λ τ ( λ ) Θ ( λ ) d λ Ω ( λ C ) ,
V CAL = G CAL Z M 2 A AP A L u 2 R S ( λ C , T FIL ) Ω ( λ ) Δ λ C .
η = V CAL R S ( λ C , T FIL ) G CAL = Z M 2 A AP A L u 2 Ω ( λ ) Δ λ C .
V EXP η = G EXP f v w b 1 4 π ϕ p ( λ C , T p ) .
f v = V EXP η w b G EXP 12 π c 2 h λ C 2 E ( m λ C ) [ exp ( h c k λ C T p ) - 1 ] - 1 .
P p ( λ 1 ) P p ( λ 2 ) = λ 2 6 E ( m λ 1 ) λ 1 6 E ( m λ 2 ) exp [ - h c k T p ( 1 λ 1 - 1 λ 2 ) ] .
λ 2 6 E ( m λ 1 ) λ 1 6 E ( m λ 2 ) exp [ - h c k T p ( 1 λ 1 - 1 λ 2 ) ] = V EXP 1 V EXP 2 η 2 η 1 G EXP 2 G EXP 1 .
V EXP η = G EXP f v 12 π c 2 h λ c 6 E ( m λ C ) x { exp [ h c k λ C T p ( x ) ] - 1 } - 1 d x .
w e [ exp ( h c k λ C T p e ) - 1 ] - 1 = x { exp ( h c k λ C T p ( x ) ) - 1 } - 1 d x ,
f v = V EXP η G EXP 12 π c 2 h λ c 6 E ( m λ c ) w e [ exp [ h c k λ C T p e ] - 1 ] - 1 .
λ 2 6 E ( m λ 1 ) λ 1 6 E ( m λ 2 ) x { exp [ h c k λ 1 T p ( x ) ] - 1 } - 1 d x x { exp [ h c k λ 2 T p ( x ) ] - 1 } - 1 d x = λ 2 6 E ( m λ 1 ) λ 1 6 E ( m λ 2 ) exp [ - h c k T p e ( 1 λ 1 - 1 λ 2 ) ] .

Metrics