Abstract

A cavity ringdown spectrometer, based on a continuous-wave swept-frequency laser, enables efficient, rapid recording of wide-ranging absorption spectra as characteristic spectral signatures of airborne molecules. The rapidly swept laser frequency resonates with the longitudinal modes of the ringdown cavity, effectively sampling the absorption spectrum of an intracavity gas at intervals defined by the cavity’s free spectral range and generating a full absorption spectrum within a single rapid sweep of the widely tunable laser frequency. We report a new analog detection scheme that registers a single data point for each buildup and ringdown decay event without logging details of the full signal waveform; this minimizes demand on digitizer speed and memory depth, reducing the time scale of data processing. This results in a compact, robust, easy-to-use instrument that offers fresh prospects for spectroscopic sensing of trace species in the atmosphere.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kastler, “Atomes à l’intérieur d’um interféromètre Perot–Fabry,” Appl. Opt. 1, 17–24 (1962).
    [CrossRef]
  2. J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  3. K. W. Busch, M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, 1999).
    [CrossRef]
  4. L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
    [CrossRef]
  5. J. Ye, L.-S. Ma, J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12absorption sensitivity,” in Ref. 3, Chap. 15, pp. 233–253.
  6. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  7. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  8. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  9. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
    [CrossRef]
  10. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
    [CrossRef]
  11. Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
    [CrossRef]
  12. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  13. D. S. Baer, R. K. Hanson, “Diode laser sensors for combustion measurements and control,” in Advances in Chemical Propulsion, G. D. Roy, ed. (CRC Press, 2002), pp. 393–412.
  14. M. G. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hohinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 479–498.
  15. F. K. Tittel, K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.
  16. M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.
  17. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
    [CrossRef]
  18. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
    [CrossRef]
  19. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
    [CrossRef] [PubMed]
  20. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  21. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  22. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  23. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000).
    [CrossRef]
  24. X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
    [CrossRef]
  25. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  26. S.-I. Chou, D. S. Baer, R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4 near 1.65 μm,” Appl. Opt. 36, 3288–3293 (1997).
    [CrossRef] [PubMed]
  27. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1866 (1999).
    [CrossRef]
  28. Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
    [CrossRef]
  29. Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
    [CrossRef]
  30. Y. He, B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. 48, 591–601 (2001).
  31. Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002).
    [CrossRef]
  32. R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003).
    [CrossRef]
  33. Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79, 941–945 (2004).
    [CrossRef]
  34. Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
    [CrossRef]
  35. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
    [CrossRef]
  36. K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
    [CrossRef] [PubMed]
  37. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
    [CrossRef]
  38. M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
    [CrossRef]
  39. Y. He, F. V. Englich, B. J. Orr, “Cavity ringdown spectroscopy with optical-heterodyne detection and miniature external-cavity tunable lasers,” in Conference on Lasers and Electro-Optics (CLEO) 2004, P. Delfyett, F. Heismann, eds., Vol. 96 of Trends in optics and photonics series (Optical Society of America, 2004), pp. CMN2-1–CMN2-2.
  40. J. D. Berger, D. Anthon, “Tunable MEMS devices for optical networks,” Opt. Photon. News, March2003), pp. 42–62.
    [CrossRef]
  41. Y. He, B. J. Orr are conducting this research.
  42. T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
    [CrossRef]
  43. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
    [CrossRef] [PubMed]
  44. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
    [CrossRef]
  45. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  46. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]

2004 (2)

Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79, 941–945 (2004).
[CrossRef]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

2003 (3)

R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003).
[CrossRef]

J. D. Berger, D. Anthon, “Tunable MEMS devices for optical networks,” Opt. Photon. News, March2003), pp. 42–62.
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

2002 (2)

Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002).
[CrossRef]

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

2001 (4)

Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

Y. He, B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. 48, 591–601 (2001).

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

2000 (4)

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000).
[CrossRef]

1999 (4)

J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1866 (1999).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

1998 (7)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

1997 (6)

S.-I. Chou, D. S. Baer, R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4 near 1.65 μm,” Appl. Opt. 36, 3288–3293 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

1996 (1)

1995 (1)

1993 (1)

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

1991 (1)

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1962 (1)

Allen, M. G.

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

M. G. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hohinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 479–498.

An, K.

Anthon, D.

J. D. Berger, D. Anthon, “Tunable MEMS devices for optical networks,” Opt. Photon. News, March2003), pp. 42–62.
[CrossRef]

Baer, D. S.

Bennett, R. G. T.

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Berger, J. D.

J. D. Berger, D. Anthon, “Tunable MEMS devices for optical networks,” Opt. Photon. News, March2003), pp. 42–62.
[CrossRef]

Bilger, H. R.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Bretenaker, F.

J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chilese, F. C.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Chou, S. I.

Chou, S.-I.

Claps, R.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

Crosson, E. R.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Dasari, R. R.

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Dubé, P.

L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

Dudek, J. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Englich, F. V.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

Y. He, F. V. Englich, B. J. Orr, “Cavity ringdown spectroscopy with optical-heterodyne detection and miniature external-cavity tunable lasers,” in Conference on Lasers and Electro-Optics (CLEO) 2004, P. Delfyett, F. Heismann, eds., Vol. 96 of Trends in optics and photonics series (Optical Society of America, 2004), pp. CMN2-1–CMN2-2.

Feld, M. S.

Fischer, H.

M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Furlong, E. R.

M. G. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hohinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 479–498.

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Glasser, J.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Grisar, R.

M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Gustafson, E. K.

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

Hahn, J. W.

Hall, J. L.

L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12absorption sensitivity,” in Ref. 3, Chap. 15, pp. 233–253.

Hanson, R. K.

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

S.-I. Chou, D. S. Baer, R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4 near 1.65 μm,” Appl. Opt. 36, 3288–3293 (1997).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

M. G. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hohinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 479–498.

D. S. Baer, R. K. Hanson, “Diode laser sensors for combustion measurements and control,” in Advances in Chemical Propulsion, G. D. Roy, ed. (CRC Press, 2002), pp. 393–412.

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

He, Y.

Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79, 941–945 (2004).
[CrossRef]

R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003).
[CrossRef]

Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002).
[CrossRef]

Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

Y. He, B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. 48, 591–601 (2001).

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Y. He, B. J. Orr are conducting this research.

Y. He, F. V. Englich, B. J. Orr, “Cavity ringdown spectroscopy with optical-heterodyne detection and miniature external-cavity tunable lasers,” in Conference on Lasers and Electro-Optics (CLEO) 2004, P. Delfyett, F. Heismann, eds., Vol. 96 of Trends in optics and photonics series (Optical Society of America, 2004), pp. CMN2-1–CMN2-2.

Hippler, M.

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Hofbauer, H.

Husman, M. E.

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

Jeffries, J. B.

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kachanov, A. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Kastler, A.

Kim, J. W.

Lawrence, M. J.

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

Le Floch, A.

J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

Lee, H.-W.

Lee, J. Y.

Lehmann, K. K.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Li, Z.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Liu, X.

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Lübken, F.-J.

M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Ma, L.-S.

L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12absorption sensitivity,” in Ref. 3, Chap. 15, pp. 233–253.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

Nagali, V.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Orr, B. J.

Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79, 941–945 (2004).
[CrossRef]

R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003).
[CrossRef]

Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002).
[CrossRef]

Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

Y. He, B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. 48, 591–601 (2001).

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Y. He, F. V. Englich, B. J. Orr, “Cavity ringdown spectroscopy with optical-heterodyne detection and miniature external-cavity tunable lasers,” in Conference on Lasers and Electro-Optics (CLEO) 2004, P. Delfyett, F. Heismann, eds., Vol. 96 of Trends in optics and photonics series (Optical Society of America, 2004), pp. CMN2-1–CMN2-2.

Y. He, B. J. Orr are conducting this research.

Owano, T. G.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Paldus, B. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Petrov, K. P.

F. K. Tittel, K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Poirson, J.

J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

Provencal, R. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Quack, M.

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Rabinowitz, P.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Ricci, K. N.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Richman, B. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Schulz, K. J.

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Segall, J.

Shorten, R. A.

R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003).
[CrossRef]

Simpson, W. R.

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Sonnenfroh, D. M.

Spence, T. G.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

Stedman, G. E.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Tacke, M.

M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Tarsa, P. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Tittel, F. K.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

F. K. Tittel, K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Todd, M. W.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Totschnig, G.

Upschulte, B. L.

Vallet, M.

J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Velasquez, A.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Wang, J.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

Wienhold, F.

M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Wilke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

Winter, F.

Wladyslawski, M.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Yang, C.

Ye, J.

L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

J. Ye, L.-S. Ma, J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12absorption sensitivity,” in Ref. 3, Chap. 15, pp. 233–253.

Yoo, Y. S.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zare, J. R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

Zare, R. N.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

Zhou, X.

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Anal. Chem. (2)

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002).
[CrossRef] [PubMed]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004).
[CrossRef]

Appl. Opt. (2)

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

Appl. Phys. B (1)

Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002).
[CrossRef]

Appl. Opt. (8)

A. Kastler, “Atomes à l’intérieur d’um interféromètre Perot–Fabry,” Appl. Opt. 1, 17–24 (1962).
[CrossRef]

S.-I. Chou, D. S. Baer, R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4 near 1.65 μm,” Appl. Opt. 36, 3288–3293 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1866 (1999).
[CrossRef]

G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

Appl. Phys. B (1)

Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79, 941–945 (2004).
[CrossRef]

Aust J. Chem. (1)

R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Chem. Phys. Lett. (5)

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Chin. Chem. Soc. (1)

Y. He, B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. 48, 591–601 (2001).

J. Opt. Soc. Am. B (1)

M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Opt. Commun. (2)

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

J. D. Berger, D. Anthon, “Tunable MEMS devices for optical networks,” Opt. Photon. News, March2003), pp. 42–62.
[CrossRef]

Rev. Sci. Instrum. (3)

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (8)

J. Ye, L.-S. Ma, J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12absorption sensitivity,” in Ref. 3, Chap. 15, pp. 233–253.

D. S. Baer, R. K. Hanson, “Diode laser sensors for combustion measurements and control,” in Advances in Chemical Propulsion, G. D. Roy, ed. (CRC Press, 2002), pp. 393–412.

M. G. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hohinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 479–498.

F. K. Tittel, K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.

Y. He, B. J. Orr are conducting this research.

K. W. Busch, M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, 1999).
[CrossRef]

Y. He, F. V. Englich, B. J. Orr, “Cavity ringdown spectroscopy with optical-heterodyne detection and miniature external-cavity tunable lasers,” in Conference on Lasers and Electro-Optics (CLEO) 2004, P. Delfyett, F. Heismann, eds., Vol. 96 of Trends in optics and photonics series (Optical Society of America, 2004), pp. CMN2-1–CMN2-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic layout of a continuous-wave (cw) cavity ringdown (CRD) spectrometer, based on either rapidly-swept cavity length or a swept-frequency (SF) tunable laser.

Fig. 2
Fig. 2

Characteristic SF cw CRD signal waveforms, simultaneously recorded with a New Focus 6262 SF laser and TDS3054B digitizer at 100 Msample s−1: (a) directly transmitted via photodetector PD2; (b) optical-heterodyne detected (OHD) by photodetector PD1 in the backward-propagating direction; (c) demodulated logarithm of the OHD signal (b).

Fig. 3
Fig. 3

Sequence of simultaneously recorded SF cw CRD buildup and decay signal waveforms, sampled at 11 successive cavity-resonance frequencies and measured with a Tunics-Plus laser and TDS3054B digitizer at 2.5 Msample s−1: (a) directly transmitted SF cw-CRD signals; (b) demodulated logarithm of the retroreflected OHD signal; (c) rapidly acquired plot of sample-and-hold output levels proportional to ringdown time τ, derived by real-time analog electronic processing of the OHD signal (b) as explained in Section 4. Trace (c) corresponds to a SF cw CRD spectrum of ringdown times τ spanning a 3.6 GHz (0.12 cm−1) range of laser frequencies across a single pressure-broadened peak, P(16) at 6490.06 cm−1, in the 1.54 μm (3001)–(0000) absorption band of CO2 gas (2% mixture of CO2 in N2; P = 125 Torr; T = 300 K).

Fig. 4
Fig. 4

SF cw CRD measurements of a single peak in the spectrum of CO2 gas at ~1.54 μm, recorded with an iolon SLE1040 SF laser and TDS794D digitizer at 50 Msample s−1: (a) two superimposed spectra at slightly different cavity lengths; (b), (c) sequences of 23 directly transmitted CRD waveforms yielding values of ringdown rate τ−1, plotted in (a) as circles (○) and dots (●). Trace (a) includes a Lorentzian curve best fit to the pressure-broadened cw CRD spectrum that spans an 8 GHz (0.27 cm−1) range of laser frequencies across the same single peak as in Fig. 3(c), in the absorption spectrum of an 11% mixture of CO2 in N2 (P = 125 Torr; T = 300 K).

Fig. 5
Fig. 5

Electronic data processing for extraction of ringdown-time data points in SF cw CRD spectroscopy: (a) demodulated logarithm of a retroreflected OHD waveform with decay slope proportional to τ−1 and two preset discriminator levels; (b) level-crossing interval Δt proportional to τ; (b), (c) time-to-amplitude (Δt-to-V) conversion, yielding a voltage V proportional to τ.

Fig. 6
Fig. 6

SF cw CRD electronic data-processing sequence: (a) demodulated logarithm of retroreflected OHD waveforms; (b), (c) time-to-amplitude conversion as in Fig. 5; (d) sample-and-hold control gate; (e) reset control logic levels; (f) sample-and-hold output, proportional to τ.

Fig. 7
Fig. 7

Survey spectra of CO2 gas at 1.52–1.55 μm: (a) SF cw CRD spectrum, recorded with an iolon SLE1040 SF laser and TDS3054B digitizer at 5 Ksample s−1; (b) HITRAN’96 simulation. Trace (a) spans a 3.3 THz (110 cm−1) range of SF laser frequencies, sampling a value of ringdown time τ at each of 104 SF cw CRD signal buildup and decay events; this yields a pressure-broadened spectrum covering the (3001)–(0000) and (3111)–(0110) absorption bands of CO2 gas (2% mixture of CO2 in N2; P = 125 Torr; T = 300 K).

Metrics