Abstract

High-repetition-rate, two-point Rayleigh thermometry is used to measure the thermal dissipation in turbulent nonpremixed jet flames. Scalar-dissipation measurements are very important in turbulent combustion but are often strongly influenced by noise effects. Dissipation is proportional to the squared gradient of the scalar, and noise produces an “apparent dissipation” that can dominate the measured dissipation, particularly at high resolution. Two independent techniques are presented that enable correction for the apparent thermal dissipation, provided that the smallest spatial scales are resolved. A model for shot-noise-limited data is developed that predicts the magnitude of the apparent dissipation at any measurement location and gives the minimum value of the apparent dissipation for measurements that are not shot-noise limited. These techniques are applied to the Rayleigh thermometry data, and they are shown to be largely self-consistent and consistent with theoretical expectations. The apparent dissipation is significantly larger than the true dissipation, demonstrating the importance of data correction in this noise-limited, fully spatially resolved regime.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Bilger, “The structure of diffusion flames,” Combust. Sci. Technol. 13, 155–170 (1976).
    [CrossRef]
  2. N. Peters, “Laminar diffusion flamelet models in non-premixed turbulent combustion,” Prog. Energy Combust. Sci. 10, 319–339 (1984).
    [CrossRef]
  3. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441–454 (1990).
    [CrossRef]
  4. J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Instrumentation for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).
  5. S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99, 775–783 (1994).
    [CrossRef]
  6. A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” Proc. Combust. Inst. 26, 153–159 (1996).
    [CrossRef]
  7. A. Brockhinke, S. Haufe, K. Kohse-Höinghaus, “Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques,” Combust. Flame 121, 367–377 (2000).
    [CrossRef]
  8. Y-C. Chen, M. S. Mansour, “Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications on combustion modeling,” Combust. Sci. Technol. 126, 291–313 (1997).
    [CrossRef]
  9. A. N. Karpetis, R. S. Barlow, “Measurements of scalar dissipation in a turbulent piloted methane/air jet flame,” Proc. Combust. Inst. 29, 1929–1936 (2002).
    [CrossRef]
  10. R. S. Barlow, A. N. Karpetis, “Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames,” Proc. Combust. Inst. 30, 673–680 (2005).
    [CrossRef]
  11. D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
    [CrossRef]
  12. S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
    [CrossRef]
  13. J. B. Kelman, A. R. Masri, “Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames,” Appl. Opt. 36, 3506–3514 (1997).
    [CrossRef] [PubMed]
  14. J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent non-premixed flames of methane,” Proc. Combust. Inst. 27, 1007–1014 (1998).
    [CrossRef]
  15. J. H. Frank, S. A. Kaiser, M. B. Long, “Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
    [CrossRef]
  16. J. A. Sutton, J. F. Driscoll, “Scalar dissipation rate measurements in flames: a method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29, 2727–2734 (2002).
    [CrossRef]
  17. E. Effelsberg, N. Peters, “Scalar dissipation rates in turbulent jets and jet diffusion flames,” Proc. Combust. Inst. 22, 693–700 (1988).
    [CrossRef]
  18. D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
    [CrossRef]
  19. G. H. Wang, N. T. Clemens, P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame,” Proc. Combust. Inst. 30, 691–699 (2005).
    [CrossRef]
  20. J. Mi, G. J. Nathan, “The influence of probe resolution on the measurement of a passive scalar and its derivatives,” Exp. Fluids 34, 687–696 (2003).
    [CrossRef]
  21. G. K. Batchelor, “Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
    [CrossRef]
  22. R. A. Antonia, B. R. Satyaprakash, A. K. M. Hussain, “Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets,” Phys. Fluids 23, 695–700 (1980).
    [CrossRef]
  23. W. M. Pitts, C. D. Richards, M. S. Levenson, “Large- and small-scale structures and their interactions in an axisymmetric jet,” (1999).
  24. J. Mi, R. A. Antonia, “Some checks of Taylor’s hypothesis in a slightly heated turbulent circular jet,” Exp. Thermal Fluid Sci. 8, 328–335 (1994).
    [CrossRef]
  25. P. Ferräo, M. V. Heitor, R. Salles, “On the accuracy of scalar dissipation measurements by laser Rayleigh scattering,” presented at the 10th International Symposium on Turbulence, Heat and Mass Transfer, Lisbon, Portugal, 10–13 July 2000.
  26. International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF), http://www.ca.sandia.gov/TNF/ .
  27. V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
    [CrossRef]
  28. W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
    [CrossRef]
  29. Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
    [CrossRef]
  30. D. Trimis, A. Melling, “Improved laser Doppler anemometry techniques for two-point turbulent flow correlations,” Meas. Sci. Technol. 6, 663–673 (1995).
    [CrossRef]
  31. S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
    [CrossRef]
  32. M. W. Renfro, G. B. King, N. M. Laurendeau, “Quantitative hydroxyl-concentration time-series measurements in turbulent nonpremixed flames,” Appl. Opt. 38, 4596–4608 (1999).
    [CrossRef]
  33. M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
    [CrossRef]
  34. D. R. Dowling, “The estimated scalar dissipation rate in gas-phase turbulent jets,” Phys. Fluids A 3, 2229–2246 (1991); erratum in Phys. Fluids A4, 453 (1992).
    [CrossRef]
  35. P. L. Miller, P. E. Dimotakis, “Measurements of scalar power spectra in high Schmidt number turbulent jets,” J. Fluid Mech. 308, 129–146 (1996).
    [CrossRef]
  36. S. B. Pope, Turbulent Flows (Cambridge University, New York, 2000).
    [CrossRef]
  37. A. Caldeira-Pires, M. V. Heitor, “Temperature and related statistics in turbulent jet flames,” Exp. Fluids 24, 118–129 (1998).
    [CrossRef]
  38. Software tools at http://navier.engr.colostate.edu/tools/ .
  39. C. A. Friehe, C. W. Van Atta, C. H. Gibson, “Jet turbulence: dissipation rate measurements and correlations,” NATO Advisory Group for Aerospace Research and Development, paper AGARD-CP-93 (NATO, 1971).
  40. L. Muniz, M. G. Mungal, “Effects of heat release and buoyance on flow structure and entrainment in turbulent nonpremixed flames,” Combust. Flame 126, 1402–1420 (2001).
    [CrossRef]
  41. H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972).
  42. G.-H. Wang, “Two-point high repetition rate measurement of temperature and thermal dissipation in a turbulent nonpremixed jet flame,” Ph.D. dissertation (The University of Texas at Austin, 2004).

2005 (3)

G. H. Wang, N. T. Clemens, P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame,” Proc. Combust. Inst. 30, 691–699 (2005).
[CrossRef]

R. S. Barlow, A. N. Karpetis, “Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames,” Proc. Combust. Inst. 30, 673–680 (2005).
[CrossRef]

D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
[CrossRef]

2003 (2)

J. Mi, G. J. Nathan, “The influence of probe resolution on the measurement of a passive scalar and its derivatives,” Exp. Fluids 34, 687–696 (2003).
[CrossRef]

Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
[CrossRef]

2002 (3)

J. H. Frank, S. A. Kaiser, M. B. Long, “Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[CrossRef]

J. A. Sutton, J. F. Driscoll, “Scalar dissipation rate measurements in flames: a method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29, 2727–2734 (2002).
[CrossRef]

A. N. Karpetis, R. S. Barlow, “Measurements of scalar dissipation in a turbulent piloted methane/air jet flame,” Proc. Combust. Inst. 29, 1929–1936 (2002).
[CrossRef]

2001 (1)

L. Muniz, M. G. Mungal, “Effects of heat release and buoyance on flow structure and entrainment in turbulent nonpremixed flames,” Combust. Flame 126, 1402–1420 (2001).
[CrossRef]

2000 (3)

M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
[CrossRef]

A. Brockhinke, S. Haufe, K. Kohse-Höinghaus, “Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques,” Combust. Flame 121, 367–377 (2000).
[CrossRef]

W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
[CrossRef]

1999 (1)

1998 (3)

A. Caldeira-Pires, M. V. Heitor, “Temperature and related statistics in turbulent jet flames,” Exp. Fluids 24, 118–129 (1998).
[CrossRef]

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent non-premixed flames of methane,” Proc. Combust. Inst. 27, 1007–1014 (1998).
[CrossRef]

1997 (3)

J. B. Kelman, A. R. Masri, “Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames,” Appl. Opt. 36, 3506–3514 (1997).
[CrossRef] [PubMed]

Y-C. Chen, M. S. Mansour, “Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications on combustion modeling,” Combust. Sci. Technol. 126, 291–313 (1997).
[CrossRef]

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

1996 (2)

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” Proc. Combust. Inst. 26, 153–159 (1996).
[CrossRef]

P. L. Miller, P. E. Dimotakis, “Measurements of scalar power spectra in high Schmidt number turbulent jets,” J. Fluid Mech. 308, 129–146 (1996).
[CrossRef]

1995 (2)

D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
[CrossRef]

D. Trimis, A. Melling, “Improved laser Doppler anemometry techniques for two-point turbulent flow correlations,” Meas. Sci. Technol. 6, 663–673 (1995).
[CrossRef]

1994 (2)

J. Mi, R. A. Antonia, “Some checks of Taylor’s hypothesis in a slightly heated turbulent circular jet,” Exp. Thermal Fluid Sci. 8, 328–335 (1994).
[CrossRef]

S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99, 775–783 (1994).
[CrossRef]

1991 (1)

D. R. Dowling, “The estimated scalar dissipation rate in gas-phase turbulent jets,” Phys. Fluids A 3, 2229–2246 (1991); erratum in Phys. Fluids A4, 453 (1992).
[CrossRef]

1990 (2)

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

1988 (1)

E. Effelsberg, N. Peters, “Scalar dissipation rates in turbulent jets and jet diffusion flames,” Proc. Combust. Inst. 22, 693–700 (1988).
[CrossRef]

1984 (1)

N. Peters, “Laminar diffusion flamelet models in non-premixed turbulent combustion,” Prog. Energy Combust. Sci. 10, 319–339 (1984).
[CrossRef]

1980 (1)

R. A. Antonia, B. R. Satyaprakash, A. K. M. Hussain, “Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets,” Phys. Fluids 23, 695–700 (1980).
[CrossRef]

1976 (1)

R. W. Bilger, “The structure of diffusion flames,” Combust. Sci. Technol. 13, 155–170 (1976).
[CrossRef]

1959 (1)

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[CrossRef]

Andre, J. C.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Andresen, P.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” Proc. Combust. Inst. 26, 153–159 (1996).
[CrossRef]

Antonia, R. A.

J. Mi, R. A. Antonia, “Some checks of Taylor’s hypothesis in a slightly heated turbulent circular jet,” Exp. Thermal Fluid Sci. 8, 328–335 (1994).
[CrossRef]

R. A. Antonia, B. R. Satyaprakash, A. K. M. Hussain, “Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets,” Phys. Fluids 23, 695–700 (1980).
[CrossRef]

Barlow, R. S.

R. S. Barlow, A. N. Karpetis, “Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames,” Proc. Combust. Inst. 30, 673–680 (2005).
[CrossRef]

A. N. Karpetis, R. S. Barlow, “Measurements of scalar dissipation in a turbulent piloted methane/air jet flame,” Proc. Combust. Inst. 29, 1929–1936 (2002).
[CrossRef]

W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
[CrossRef]

Batchelor, G. K.

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[CrossRef]

Bergmann, V.

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

Bilger, R. W.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

R. W. Bilger, “The structure of diffusion flames,” Combust. Sci. Technol. 13, 155–170 (1976).
[CrossRef]

Brockhinke, A.

A. Brockhinke, S. Haufe, K. Kohse-Höinghaus, “Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques,” Combust. Flame 121, 367–377 (2000).
[CrossRef]

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” Proc. Combust. Inst. 26, 153–159 (1996).
[CrossRef]

Brown, T. M.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99, 775–783 (1994).
[CrossRef]

Caldeira-Pires, A.

A. Caldeira-Pires, M. V. Heitor, “Temperature and related statistics in turbulent jet flames,” Exp. Fluids 24, 118–129 (1998).
[CrossRef]

Chen, J.-Y.

W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
[CrossRef]

Chen, Y.-L.

W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
[CrossRef]

Chen, Y-C.

Y-C. Chen, M. S. Mansour, “Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications on combustion modeling,” Combust. Sci. Technol. 126, 291–313 (1997).
[CrossRef]

Clemens, N. T.

G. H. Wang, N. T. Clemens, P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame,” Proc. Combust. Inst. 30, 691–699 (2005).
[CrossRef]

Dahm, W. J. A.

D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
[CrossRef]

David, R.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Dimotakis, P. E.

P. L. Miller, P. E. Dimotakis, “Measurements of scalar power spectra in high Schmidt number turbulent jets,” J. Fluid Mech. 308, 129–146 (1996).
[CrossRef]

Dowling, D. R.

D. R. Dowling, “The estimated scalar dissipation rate in gas-phase turbulent jets,” Phys. Fluids A 3, 2229–2246 (1991); erratum in Phys. Fluids A4, 453 (1992).
[CrossRef]

Dreizler, A.

D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
[CrossRef]

Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
[CrossRef]

Driscoll, J. F.

J. A. Sutton, J. F. Driscoll, “Scalar dissipation rate measurements in flames: a method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29, 2727–2734 (2002).
[CrossRef]

D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
[CrossRef]

Effelsberg, E.

E. Effelsberg, N. Peters, “Scalar dissipation rates in turbulent jets and jet diffusion flames,” Proc. Combust. Inst. 22, 693–700 (1988).
[CrossRef]

Everest, D. A.

D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
[CrossRef]

Feikema, D. A.

D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
[CrossRef]

Ferräo, P.

P. Ferräo, M. V. Heitor, R. Salles, “On the accuracy of scalar dissipation measurements by laser Rayleigh scattering,” presented at the 10th International Symposium on Turbulence, Heat and Mass Transfer, Lisbon, Portugal, 10–13 July 2000.

Fielding, J.

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent non-premixed flames of methane,” Proc. Combust. Inst. 27, 1007–1014 (1998).
[CrossRef]

Frank, J. H.

J. H. Frank, S. A. Kaiser, M. B. Long, “Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[CrossRef]

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

Friehe, C. A.

C. A. Friehe, C. W. Van Atta, C. H. Gibson, “Jet turbulence: dissipation rate measurements and correlations,” NATO Advisory Group for Aerospace Research and Development, paper AGARD-CP-93 (NATO, 1971).

Gaskey, S.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Geyer, D.

D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
[CrossRef]

Gibson, C. H.

C. A. Friehe, C. W. Van Atta, C. H. Gibson, “Jet turbulence: dissipation rate measurements and correlations,” NATO Advisory Group for Aerospace Research and Development, paper AGARD-CP-93 (NATO, 1971).

Gore, J. P.

M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
[CrossRef]

Hanson, R. K.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Instrumentation for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).

Hassel, E. P.

Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
[CrossRef]

Haufe, S.

A. Brockhinke, S. Haufe, K. Kohse-Höinghaus, “Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques,” Combust. Flame 121, 367–377 (2000).
[CrossRef]

Heitor, M. V.

A. Caldeira-Pires, M. V. Heitor, “Temperature and related statistics in turbulent jet flames,” Exp. Fluids 24, 118–129 (1998).
[CrossRef]

P. Ferräo, M. V. Heitor, R. Salles, “On the accuracy of scalar dissipation measurements by laser Rayleigh scattering,” presented at the 10th International Symposium on Turbulence, Heat and Mass Transfer, Lisbon, Portugal, 10–13 July 2000.

Hussain, A. K. M.

R. A. Antonia, B. R. Satyaprakash, A. K. M. Hussain, “Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets,” Phys. Fluids 23, 695–700 (1980).
[CrossRef]

Janicka, J.

D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
[CrossRef]

Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
[CrossRef]

Kaiser, S. A.

J. H. Frank, S. A. Kaiser, M. B. Long, “Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[CrossRef]

Karpetis, A. N.

R. S. Barlow, A. N. Karpetis, “Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames,” Proc. Combust. Inst. 30, 673–680 (2005).
[CrossRef]

A. N. Karpetis, R. S. Barlow, “Measurements of scalar dissipation in a turbulent piloted methane/air jet flame,” Proc. Combust. Inst. 29, 1929–1936 (2002).
[CrossRef]

Kelman, J. B.

Kempf, A.

D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
[CrossRef]

King, G. B.

M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
[CrossRef]

M. W. Renfro, G. B. King, N. M. Laurendeau, “Quantitative hydroxyl-concentration time-series measurements in turbulent nonpremixed flames,” Appl. Opt. 38, 4596–4608 (1999).
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, S. Haufe, K. Kohse-Höinghaus, “Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques,” Combust. Flame 121, 367–377 (2000).
[CrossRef]

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” Proc. Combust. Inst. 26, 153–159 (1996).
[CrossRef]

Laurendeau, N. M.

M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
[CrossRef]

M. W. Renfro, G. B. King, N. M. Laurendeau, “Quantitative hydroxyl-concentration time-series measurements in turbulent nonpremixed flames,” Appl. Opt. 38, 4596–4608 (1999).
[CrossRef]

Levenson, M. S.

W. M. Pitts, C. D. Richards, M. S. Levenson, “Large- and small-scale structures and their interactions in an axisymmetric jet,” (1999).

Long, M. B.

J. H. Frank, S. A. Kaiser, M. B. Long, “Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[CrossRef]

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent non-premixed flames of methane,” Proc. Combust. Inst. 27, 1007–1014 (1998).
[CrossRef]

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

Lumley, J. L.

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972).

Mansour, M. S.

Y-C. Chen, M. S. Mansour, “Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications on combustion modeling,” Combust. Sci. Technol. 126, 291–313 (1997).
[CrossRef]

Marran, D. F.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

Masri, A. R.

Meier, W.

W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
[CrossRef]

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

Melling, A.

D. Trimis, A. Melling, “Improved laser Doppler anemometry techniques for two-point turbulent flow correlations,” Meas. Sci. Technol. 6, 663–673 (1995).
[CrossRef]

Mi, J.

J. Mi, G. J. Nathan, “The influence of probe resolution on the measurement of a passive scalar and its derivatives,” Exp. Fluids 34, 687–696 (2003).
[CrossRef]

J. Mi, R. A. Antonia, “Some checks of Taylor’s hypothesis in a slightly heated turbulent circular jet,” Exp. Thermal Fluid Sci. 8, 328–335 (1994).
[CrossRef]

Miller, P. L.

P. L. Miller, P. E. Dimotakis, “Measurements of scalar power spectra in high Schmidt number turbulent jets,” J. Fluid Mech. 308, 129–146 (1996).
[CrossRef]

Mungal, M. G.

L. Muniz, M. G. Mungal, “Effects of heat release and buoyance on flow structure and entrainment in turbulent nonpremixed flames,” Combust. Flame 126, 1402–1420 (2001).
[CrossRef]

Muniz, L.

L. Muniz, M. G. Mungal, “Effects of heat release and buoyance on flow structure and entrainment in turbulent nonpremixed flames,” Combust. Flame 126, 1402–1420 (2001).
[CrossRef]

Nandula, S. P.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99, 775–783 (1994).
[CrossRef]

Nathan, G. J.

J. Mi, G. J. Nathan, “The influence of probe resolution on the measurement of a passive scalar and its derivatives,” Exp. Fluids 34, 687–696 (2003).
[CrossRef]

Paul, P. H.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Peters, N.

E. Effelsberg, N. Peters, “Scalar dissipation rates in turbulent jets and jet diffusion flames,” Proc. Combust. Inst. 22, 693–700 (1988).
[CrossRef]

N. Peters, “Laminar diffusion flamelet models in non-premixed turbulent combustion,” Prog. Energy Combust. Sci. 10, 319–339 (1984).
[CrossRef]

Pitts, W. M.

W. M. Pitts, C. D. Richards, M. S. Levenson, “Large- and small-scale structures and their interactions in an axisymmetric jet,” (1999).

Pitz, R. W.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99, 775–783 (1994).
[CrossRef]

Pope, S. B.

S. B. Pope, Turbulent Flows (Cambridge University, New York, 2000).
[CrossRef]

Renfro, M. W.

M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
[CrossRef]

M. W. Renfro, G. B. King, N. M. Laurendeau, “Quantitative hydroxyl-concentration time-series measurements in turbulent nonpremixed flames,” Appl. Opt. 38, 4596–4608 (1999).
[CrossRef]

Richards, C. D.

W. M. Pitts, C. D. Richards, M. S. Levenson, “Large- and small-scale structures and their interactions in an axisymmetric jet,” (1999).

Salles, R.

P. Ferräo, M. V. Heitor, R. Salles, “On the accuracy of scalar dissipation measurements by laser Rayleigh scattering,” presented at the 10th International Symposium on Turbulence, Heat and Mass Transfer, Lisbon, Portugal, 10–13 July 2000.

Satyaprakash, B. R.

R. A. Antonia, B. R. Satyaprakash, A. K. M. Hussain, “Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets,” Phys. Fluids 23, 695–700 (1980).
[CrossRef]

Schaffer, A. M.

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent non-premixed flames of methane,” Proc. Combust. Inst. 27, 1007–1014 (1998).
[CrossRef]

Schneider, Ch.

Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
[CrossRef]

Seitzman, J. M.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Instrumentation for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).

Stårner, S. H.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

Stricker, W.

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

Sutton, J. A.

J. A. Sutton, J. F. Driscoll, “Scalar dissipation rate measurements in flames: a method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29, 2727–2734 (2002).
[CrossRef]

Tennekes, H.

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972).

Trimis, D.

D. Trimis, A. Melling, “Improved laser Doppler anemometry techniques for two-point turbulent flow correlations,” Meas. Sci. Technol. 6, 663–673 (1995).
[CrossRef]

Vacus, P.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Van Atta, C. W.

C. A. Friehe, C. W. Van Atta, C. H. Gibson, “Jet turbulence: dissipation rate measurements and correlations,” NATO Advisory Group for Aerospace Research and Development, paper AGARD-CP-93 (NATO, 1971).

Varghese, P. L.

G. H. Wang, N. T. Clemens, P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame,” Proc. Combust. Inst. 30, 691–699 (2005).
[CrossRef]

Villermaux, J.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Wang, G. H.

G. H. Wang, N. T. Clemens, P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame,” Proc. Combust. Inst. 30, 691–699 (2005).
[CrossRef]

Wang, G.-H.

G.-H. Wang, “Two-point high repetition rate measurement of temperature and thermal dissipation in a turbulent nonpremixed jet flame,” Ph.D. dissertation (The University of Texas at Austin, 2004).

Wolff, D.

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

AIAA J. (1)

M. W. Renfro, J. P. Gore, G. B. King, N. M. Laurendeau, “Self-similarity of measured hydroxyl-concentration temporal statistics in turbulent nonpremixed jet flames,” AIAA J. 38, 1230–1236 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

Combust. Flame (6)

W. Meier, R. S. Barlow, Y.-L. Chen, J.-Y. Chen, “Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction,” Combust. Flame 123, 326–343 (2000).
[CrossRef]

Ch. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, “Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames,” Combust. Flame 135, 185–190 (2003).
[CrossRef]

D. A. Everest, J. F. Driscoll, W. J. A. Dahm, D. A. Feikema, “Images of the temperature field and temperature gradients to quantify mixing rates within a non-premixed turbulent flame,” Combust. Flame 101, 58–68 (1995).
[CrossRef]

A. Brockhinke, S. Haufe, K. Kohse-Höinghaus, “Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques,” Combust. Flame 121, 367–377 (2000).
[CrossRef]

S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99, 775–783 (1994).
[CrossRef]

L. Muniz, M. G. Mungal, “Effects of heat release and buoyance on flow structure and entrainment in turbulent nonpremixed flames,” Combust. Flame 126, 1402–1420 (2001).
[CrossRef]

Combust. Sci. Technol. (3)

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

Y-C. Chen, M. S. Mansour, “Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications on combustion modeling,” Combust. Sci. Technol. 126, 291–313 (1997).
[CrossRef]

R. W. Bilger, “The structure of diffusion flames,” Combust. Sci. Technol. 13, 155–170 (1976).
[CrossRef]

Exp. Fluids (3)

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. Andre, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

J. Mi, G. J. Nathan, “The influence of probe resolution on the measurement of a passive scalar and its derivatives,” Exp. Fluids 34, 687–696 (2003).
[CrossRef]

A. Caldeira-Pires, M. V. Heitor, “Temperature and related statistics in turbulent jet flames,” Exp. Fluids 24, 118–129 (1998).
[CrossRef]

Exp. Thermal Fluid Sci. (1)

J. Mi, R. A. Antonia, “Some checks of Taylor’s hypothesis in a slightly heated turbulent circular jet,” Exp. Thermal Fluid Sci. 8, 328–335 (1994).
[CrossRef]

J. Fluid Mech. (2)

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[CrossRef]

P. L. Miller, P. E. Dimotakis, “Measurements of scalar power spectra in high Schmidt number turbulent jets,” J. Fluid Mech. 308, 129–146 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

D. Trimis, A. Melling, “Improved laser Doppler anemometry techniques for two-point turbulent flow correlations,” Meas. Sci. Technol. 6, 663–673 (1995).
[CrossRef]

Phys. Fluids (1)

R. A. Antonia, B. R. Satyaprakash, A. K. M. Hussain, “Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets,” Phys. Fluids 23, 695–700 (1980).
[CrossRef]

Phys. Fluids A (1)

D. R. Dowling, “The estimated scalar dissipation rate in gas-phase turbulent jets,” Phys. Fluids A 3, 2229–2246 (1991); erratum in Phys. Fluids A4, 453 (1992).
[CrossRef]

Proc. Combust. Inst. (9)

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” Proc. Combust. Inst. 26, 153–159 (1996).
[CrossRef]

A. N. Karpetis, R. S. Barlow, “Measurements of scalar dissipation in a turbulent piloted methane/air jet flame,” Proc. Combust. Inst. 29, 1929–1936 (2002).
[CrossRef]

R. S. Barlow, A. N. Karpetis, “Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames,” Proc. Combust. Inst. 30, 673–680 (2005).
[CrossRef]

D. Geyer, A. Kempf, A. Dreizler, J. Janicka, “Scalar dissipation rates in isothermal and reactive turbulent opposedjets: 1D-Raman/Rayleigh experiments supported by LES,” Proc. Combust. Inst. 30, 681–689 (2005).
[CrossRef]

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent non-premixed flames of methane,” Proc. Combust. Inst. 27, 1007–1014 (1998).
[CrossRef]

J. H. Frank, S. A. Kaiser, M. B. Long, “Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[CrossRef]

J. A. Sutton, J. F. Driscoll, “Scalar dissipation rate measurements in flames: a method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29, 2727–2734 (2002).
[CrossRef]

E. Effelsberg, N. Peters, “Scalar dissipation rates in turbulent jets and jet diffusion flames,” Proc. Combust. Inst. 22, 693–700 (1988).
[CrossRef]

G. H. Wang, N. T. Clemens, P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame,” Proc. Combust. Inst. 30, 691–699 (2005).
[CrossRef]

Prog. Energy Combust. Sci. (1)

N. Peters, “Laminar diffusion flamelet models in non-premixed turbulent combustion,” Prog. Energy Combust. Sci. 10, 319–339 (1984).
[CrossRef]

Other (9)

J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Instrumentation for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).

S. B. Pope, Turbulent Flows (Cambridge University, New York, 2000).
[CrossRef]

P. Ferräo, M. V. Heitor, R. Salles, “On the accuracy of scalar dissipation measurements by laser Rayleigh scattering,” presented at the 10th International Symposium on Turbulence, Heat and Mass Transfer, Lisbon, Portugal, 10–13 July 2000.

International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF), http://www.ca.sandia.gov/TNF/ .

W. M. Pitts, C. D. Richards, M. S. Levenson, “Large- and small-scale structures and their interactions in an axisymmetric jet,” (1999).

Software tools at http://navier.engr.colostate.edu/tools/ .

C. A. Friehe, C. W. Van Atta, C. H. Gibson, “Jet turbulence: dissipation rate measurements and correlations,” NATO Advisory Group for Aerospace Research and Development, paper AGARD-CP-93 (NATO, 1971).

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972).

G.-H. Wang, “Two-point high repetition rate measurement of temperature and thermal dissipation in a turbulent nonpremixed jet flame,” Ph.D. dissertation (The University of Texas at Austin, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of experimental setup.

Fig. 2
Fig. 2

Variation of estimated local Reynolds number along jet flame centerline.

Fig. 3
Fig. 3

Variation of estimated local Batchelor length and time scales along the jet-flame centerline.

Fig. 4
Fig. 4

Representative two-channel temperature and radial thermal-dissipation rate time-series at the jet flame centerline at x/d = 60.

Fig. 5
Fig. 5

Fluctuating temperature power spectra at the jet flame centerline (a) without noise-floor correction; (b) with noise-floor correction (except at x/d = 40 and 50).

Fig. 6
Fig. 6

Effects of varying laser energy on the measured radial ensemble-averaged squared gradient. Laser repetition rate is 10 kHz for laser energies 5 mJ and 7.2 mJ and 5 kHz for 12 mJ per pulse.

Fig. 7
Fig. 7

Variation of the measured, apparent, and corrected ensemble-averaged squared gradients by two-point redundant technique, PSD technique, and shot-noise-limited noise estimations (radial component only) along the jet flame centerline. S and O indicate separated and overlapped, respectively.

Fig. 8
Fig. 8

Variation of the measured, apparent, and corrected ensemble-averaged squared gradients by two-point redundant technique, PSD technique, and shot-noise limited noise estimations (radial component only) at x/d = 60. S and O indicate separated and overlapped, respectively.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

( ξ / x ) m 2 = ( ξ / x ) 2 + n 1 2 + n 2 2 / ( Δ x ) 2 .
χ m = 2 D ( χ + 2 σ n 2 / Δ x 2 ) ,
( T / x ) m 2 = ( T 2 - T 1 ) 2 / Δ x 2 + 2 ( T 2 - T 1 ) × ( n 2 - n 1 ) / Δ x 2 + ( n 2 - n 1 ) 2 / Δ x 2 ,
( T / x ) m 2 = ( T / x ) 2 + 2 σ n 2 / Δ x 2 .
ɛ a = 2 σ n 2 / Δ x 2 .
DSNR = Δ T 2 / σ n ,
R m ( τ ) = T m ( t ) T m ( t - τ ) / σ m 2 ,
PSD m ( f ) = J [ R m ( τ ) ] = J [ T m ( t ) ] 2 / σ m 2 ,
PSD ( f ) = PSD m ( f ) - C 2 / f C 1 - C 2 ,
ɛ a = 2 C 2 σ m 2 / Δ x 2 .
( T / x ) m 2 = ( n 2 - n 1 ) 2 / Δ x 2 .
σ n , T / T = ± σ n , I R / I R .
ɛ a , T = 2 T 2 1 SNR 2 1 Δ r 2 ,
ɛ a , T ɛ a , T air = ( T T air ) 2 ( SNR air SNR ) 2 .
ɛ a , T / ɛ a , T air = ( T / T air ) 3 .
ɛ a , T / ɛ a , T air = [ α ( T ) / α ( T air ) ] ( T / T air ) 3 .
ɛ a , T / ɛ a , T air = ( T / T air ) 3 + κ ( T / T air ) 5 .
T = I ref T ref / I R ,
χ T , r = 2 α ( T ) ( T / r ) 2 .

Metrics