Abstract

Diode-laser-based sum-frequency generation of ultraviolet (UV) radiation at 313.5 nm was utilized for high-speed absorption measurements of OH mole fraction and temperature at rates up to 20 kHz. Sensor performance was characterized over a wide range of operating conditions in a 25.4 mm path-length, steady, C2H4–air diffusion flame through comparisons with coherent anti-Stokes Raman spectroscopy (CARS), planar laser-induced fluorescence (PLIF), and a two-dimensional numerical simulation with detailed chemical kinetics. Experimental uncertainties of 5% and 11% were achieved for measured temperatures and OH mole fractions, respectively, with standard deviations of <3% at 20 kHz and an OH detection limit of <1 part per million in a 1 m path length. After validation in a steady flame, high-speed diode-laser-based measurements of OH mole fraction and temperature were demonstrated for the first time in the unsteady exhaust of a liquid-fueled, swirl-stabilized combustor. Typical agreement of ~5% was achieved with CARS temperature measurements at various fuel/air ratios, and sensor precision was sufficient to capture oscillations of temperature and OH mole fraction for potential use with multiparameter control strategies in combustors of practical interest.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
    [CrossRef]
  2. P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
    [CrossRef]
  3. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
    [CrossRef] [PubMed]
  4. D. B. Oh, “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Opt. Lett. 20, 100–102 (1995).
    [CrossRef] [PubMed]
  5. J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
    [CrossRef] [PubMed]
  6. X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.
  7. M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
    [CrossRef]
  8. T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, J. R. Gord, “Diode-laser based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,’” Opt. Lett. 30, 1321–1323 (2005).
    [CrossRef] [PubMed]
  9. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
    [CrossRef]
  10. SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423, USA, through www.sandia.gov/imrl/XWEB1128/xxtal.htm .
  11. T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, L. Flamand, “Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor,” Appl. Opt. 44, 1491–1502 (2005).
    [CrossRef] [PubMed]
  12. R. Storn, K. Price, “Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim.11, 341–359 (1997); source code available from www.icsi.berkeley.edu/~storn/code.html .
    [CrossRef]
  13. S. R. Turns, An Introduction to Combustion: Concepts and Applications, 2nd ed. (McGraw-Hill, New York, 2000).
  14. M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
    [CrossRef]
  15. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
    [CrossRef]
  16. E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
    [CrossRef]
  17. W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
    [CrossRef]
  18. M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
    [CrossRef]
  19. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
    [CrossRef]
  20. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  21. T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
    [CrossRef]
  22. T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005).
    [CrossRef] [PubMed]
  23. V. R. Katta, W. M. Roquemore, “On the structure of a stretched/compressed laminar flamelet: influence of preferential diffusion,” Combust. Flame 100, 61–70 (1995).
    [CrossRef]
  24. H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
    [CrossRef]
  25. V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994).
    [CrossRef]
  26. V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994).
    [CrossRef]
  27. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).
  28. S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
    [CrossRef]
  29. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef] [PubMed]
  30. X. Ouyang, P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
    [CrossRef] [PubMed]
  31. S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004).
    [CrossRef] [PubMed]
  32. G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
    [CrossRef]

2005 (4)

2004 (4)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004).
[CrossRef] [PubMed]

2002 (3)

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

2001 (1)

1999 (1)

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

1998 (2)

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

1997 (2)

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

1995 (2)

V. R. Katta, W. M. Roquemore, “On the structure of a stretched/compressed laminar flamelet: influence of preferential diffusion,” Combust. Flame 100, 61–70 (1995).
[CrossRef]

D. B. Oh, “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Opt. Lett. 20, 100–102 (1995).
[CrossRef] [PubMed]

1994 (2)

V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994).
[CrossRef]

V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994).
[CrossRef]

1993 (1)

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

1989 (2)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

X. Ouyang, P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

1984 (1)

Afzelius, M.

Allen, M. G.

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

Anderson, T. N.

Barron-Jimenez, R.

Belovich, V. M.

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Bengtsson, P.-E.

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Brown, M. S.

Candel, S.

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

Caton, J. A.

Chang, A. Y.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Corporan, E.

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Critchley, I.

Davis, S. J.

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

Donovan, M. T.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).

Flamand, L.

Frenklach, M.

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

Gord, J. R.

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, L. Flamand, “Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor,” Appl. Opt. 44, 1491–1502 (2005).
[CrossRef] [PubMed]

T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, J. R. Gord, “Diode-laser based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,’” Opt. Lett. 30, 1321–1323 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004).
[CrossRef] [PubMed]

Goss, L. P.

V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994).
[CrossRef]

V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994).
[CrossRef]

Gutmark, E. J.

X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.

Hall, D. L.

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Hanna, S. F.

T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, L. Flamand, “Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor,” Appl. Opt. 44, 1491–1502 (2005).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

Hanson, R. K.

J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef] [PubMed]

X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.

Jeffies, J. B.

X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.

Jeffries, J. B.

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

V. R. Katta, W. M. Roquemore, “On the structure of a stretched/compressed laminar flamelet: influence of preferential diffusion,” Combust. Flame 100, 61–70 (1995).
[CrossRef]

V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994).
[CrossRef]

V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994).
[CrossRef]

Kessler, W. J.

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

King, G. B.

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

Laurendeau, N. M.

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

Li, G.

X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.

Liu, J. T. C.

Lucht, R. P.

T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, J. R. Gord, “Diode-laser based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,’” Opt. Lett. 30, 1321–1323 (2005).
[CrossRef] [PubMed]

T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, L. Flamand, “Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor,” Appl. Opt. 44, 1491–1502 (2005).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Meyer, T. R.

T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005).
[CrossRef] [PubMed]

T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, J. R. Gord, “Diode-laser based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,’” Opt. Lett. 30, 1321–1323 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Miller, T. A.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Mueller, C. J.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Najm, H. N.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Oh, D. B.

Ouyang, X.

Pack, S. D.

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

Palmer, T. R.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Paul, P. H.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Ray, G. J.

Rea, E. C.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Renard, P. H.

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

Renfro, M. W.

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

Rolon, J. C.

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

Roquemore, W. M.

V. R. Katta, W. M. Roquemore, “On the structure of a stretched/compressed laminar flamelet: influence of preferential diffusion,” Combust. Flame 100, 61–70 (1995).
[CrossRef]

V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994).
[CrossRef]

V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994).
[CrossRef]

Roy, S.

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, J. R. Gord, “Diode-laser based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,’” Opt. Lett. 30, 1321–1323 (2005).
[CrossRef] [PubMed]

T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, L. Flamand, “Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor,” Appl. Opt. 44, 1491–1502 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004).
[CrossRef] [PubMed]

Schrock, C. R.

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Thevenin, D.

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

Torek, P. V.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

Turns, S. R.

S. R. Turns, An Introduction to Combustion: Concepts and Applications, 2nd ed. (McGraw-Hill, New York, 2000).

Varghese, P. L.

Walther, T.

Wang, H.

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

Wooldridge, M. S.

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

Woolridge, M. S.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Wyckoff, P. S.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Zhou, X.

X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.

AIAA J. (1)

V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

Combust. Flame (10)

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

V. R. Katta, W. M. Roquemore, “On the structure of a stretched/compressed laminar flamelet: influence of preferential diffusion,” Combust. Flame 100, 61–70 (1995).
[CrossRef]

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Int. J. Num. Methods Heat Fluid Flow (1)

V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

Opt. Lett. (4)

Proc. Combust. Instit. (1)

M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002).
[CrossRef]

Other (5)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).

X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.

SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423, USA, through www.sandia.gov/imrl/XWEB1128/xxtal.htm .

R. Storn, K. Price, “Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim.11, 341–359 (1997); source code available from www.icsi.berkeley.edu/~storn/code.html .
[CrossRef]

S. R. Turns, An Introduction to Combustion: Concepts and Applications, 2nd ed. (McGraw-Hill, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental layout of UV absorption sensor for measurements of OH mole fraction and temperature at rates up to 20 kHz.

Fig. 2
Fig. 2

Raw signals acquired over four laser sweeps in Hencken burner at Φ = 1.0. Flame-off signal is shifted vertically for clarity. Free spectral range of etalon is 2 GHz.

Fig. 3
Fig. 3

Variation of best-fit OH mole fraction and temperature with collision width for averaged absorption spectrum acquired 15 mm above Hencken burner at Φ = 1.0. Vertical lines show range of collision widths for Φ = 1.0 ± 0.5.

Fig. 4
Fig. 4

Sample OH PLIF images acquired at Φ = 0.71, 1.0, 1.5 for determining path length in Hencken burner.

Fig. 5
Fig. 5

Horizontal OH profiles at 10 mm and 20 mm above Hencken burner obtained from PLIF images and CFD code with detailed kinetics at Φ = 0.91.

Fig. 6
Fig. 6

Effect of temperature on Boltzmann fraction for J = 9.5 rotational level of OH and on equilibrium mole fraction of OH for C2H4–air combustion at Φ = 0.91.

Fig. 7
Fig. 7

(a) Voigt fit to 2 kHz 38-sweep-average OH absorption spectra acquired in Hencken burner at Φ = 0.51 and 1.1; (b) artificially broadened Voigt fit (0.127 cm−1 Gaussian instrument function) to 20 kHz single-sweep OH absorption spectra acquired in Hencken burner at Φ = 1.0. Residual in (a) is for Φ = 1.1.

Fig. 8
Fig. 8

Time series of OH mole fraction and temperature 15 mm above Hencken burner acquired for Φ = 1 at (a) 2 kHz and (b) 20 kHz.

Fig. 9
Fig. 9

Variation of centerline temperature and OH mole fraction with vertical height in Hencken burner at Φ = 0.91 obtained from OH absorption sensor and CFD code with detailed kinetics. OH absorption data acquired at 2 kHz (38-sweep average).

Fig. 10
Fig. 10

Variation of temperature and OH mole fraction with equivalence ratio in Hencken burner for heights of (a) 5 mm, (b) 10 mm, and (c) 20 mm. OH absorption data acquired at 2 kHz (38-sweep average).

Fig. 11
Fig. 11

Time series of temperature and OH mole fraction acquired at 10 kHz (single sweep) in exhaust stream of swirl-stabilized liquid-fueled combustor at Φ = 1.0.

Fig. 12
Fig. 12

Variation of temperature and OH mole fraction with equivalence ratio in exhaust stream of swirl-stabilized liquid-fueled combustor. Equilibrium prediction of OH mole fraction based on CARS temperature measurements. OH absorption data acquired at 2 kHz (38-sweep average).

Tables (1)

Tables Icon

Table 1 Equivalence-Ratio Settings and Flow Rates in Standard Liters per Minute (SLPM) in C2H4–air Hencken-Burner Flame

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ν = I I 0 = exp [ - 0 L k ν ( x ) d x ] ,
T ν = I I 0 = exp ( - k ν L ) .
L eff = n OH ( x ) d x n OH , peak ,

Metrics