Abstract

An accurate temperature measurement technique for steady, high-pressure flames is investigated using excitation wavelength-scanned laser-induced fluorescence (LIF) within the nitric oxide (NO) AX(0, 0) band, and demonstration experiments are performed in premixed methane/air flames at pressures between 1 and 60 bars with a fuel/air ratio of 0.9. Excitation spectra are simulated with a computational spectral simulation program (LIFSim) and fit to the experimental data to extract gas temperature. The LIF scan range was chosen to provide sensitivity over a wide temperature range and to minimize LIF interference from oxygen. The fitting method is robust against elastic scattering and broadband LIF interference from other species, and yields absolute, calibration-free temperature measurements. Because of loss of structure in the excitation spectra at high pressures, background signal intensities were determined using a NO addition method that simultaneously yields nascent NO concentrations in the postflame gases. In addition, fluorescence emission spectra were also analyzed to quantify the contribution of background signal and to investigate interference in the detection bandwidth. The NO-LIF temperatures are in good agreement with intrusive single-color pyrometry. The proposed thermometry method could provide a useful tool for studing high-pressure flame chemistry as well as provide a standard to evaluate and validate fast-imaging thermometry techniques for practical diagnostics of high-pressure combustion systems.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Heitor, A. L. N. Moreira, “Thermocouples and sample probes for combustion studies,” Prog. Energy Combust. Sci. 19, 259–278 (1993).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 27, 1–41 (1998).
    [CrossRef]
  4. W. P. Stricker, “Measurements of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002).
  5. N. M. Laurendeau, “Temperature measurements by light scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
    [CrossRef]
  6. D. A. Greenhalgh, Advances in Non-Linear Spectroscopy (Wiley, 1988).
  7. L. P. Goss, Instrumentation for Flows with Combustion (Academic, 1993).
  8. R. K. Hanson, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477–2480 (1978).
    [CrossRef] [PubMed]
  9. R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
    [CrossRef]
  10. A. Orth, V. Sick, J. Wolfrum, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Proc. Combust. Inst. 25, 143–150 (1994).
    [CrossRef]
  11. A. Anderson, The Raman Effect (Marcel Dekker, 1971).
  12. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  13. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
    [CrossRef] [PubMed]
  14. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
    [CrossRef] [PubMed]
  15. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes,” Appl. Opt. 42, 4922–4936 (2003).
    [CrossRef] [PubMed]
  16. W. G. Bessler, C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519–533 (2004).
    [CrossRef]
  17. H. Kronemayer, I. Düwel, C. Schulz, “Temperature imaging in spray flames,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).
  18. M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).
  19. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
    [CrossRef]
  20. M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence (LII) for soot diagnostics at high-pressure,” Appl. Opt. 42, 2052–2062 (2003).
    [CrossRef] [PubMed]
  21. A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
    [CrossRef]
  22. M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
    [CrossRef]
  23. M. Yorozu, Y. Okada, A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev. 3, 293–298 (1996).
    [CrossRef]
  24. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
    [CrossRef]
  25. A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
    [CrossRef]
  26. W. G. Bessler, C. Schulz, V. Sick, J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute, Chicago, 16–19 March 2003, paper P105, http://www.lifsim.com .
  27. J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
    [CrossRef]
  28. M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NOγ (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  29. G. Herzberg, Spectra of Diatomic Molecules (Krieger, 1950).
  30. M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol. 118, 257–283 (1996).
    [CrossRef]
  31. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
    [CrossRef]
  32. C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
    [CrossRef]
  33. W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).
  34. B. A. Williams, J. W. Fleming, “Comparative species concentrations in CH4/O4/Ar flames doped with N2O, NO and NO2,” Combust. Flame 98, 93–106 (1994).
    [CrossRef]
  35. P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
    [CrossRef]
  36. J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
    [CrossRef]
  37. W. Reynolds, Stanjan: Chemical Equilibrium Solver (Stanford University, 1987).
  38. Y. Zeldovich, “The oxidation of nitrogen in combustion and explosion,” Acta Physicochimica USSR 21, 577–628 (1946).
  39. C. T. Bowman, “Control of combustion-generated nitrogen oxide emission: technology driven by regulation,” Proc. Combust. Inst. 24, 859–878 (1992).
    [CrossRef]

2005

J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
[CrossRef]

2004

W. G. Bessler, C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519–533 (2004).
[CrossRef]

2003

2002

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

2000

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

1999

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

1998

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
[CrossRef]

J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 27, 1–41 (1998).
[CrossRef]

1997

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

1996

M. Yorozu, Y. Okada, A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev. 3, 293–298 (1996).
[CrossRef]

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

1995

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

1994

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NOγ (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. Orth, V. Sick, J. Wolfrum, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Proc. Combust. Inst. 25, 143–150 (1994).
[CrossRef]

B. A. Williams, J. W. Fleming, “Comparative species concentrations in CH4/O4/Ar flames doped with N2O, NO and NO2,” Combust. Flame 98, 93–106 (1994).
[CrossRef]

1993

M. V. Heitor, A. L. N. Moreira, “Thermocouples and sample probes for combustion studies,” Prog. Energy Combust. Sci. 19, 259–278 (1993).
[CrossRef]

1992

C. T. Bowman, “Control of combustion-generated nitrogen oxide emission: technology driven by regulation,” Proc. Combust. Inst. 24, 859–878 (1992).
[CrossRef]

1988

N. M. Laurendeau, “Temperature measurements by light scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

1985

1981

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
[CrossRef]

1978

1946

Y. Zeldovich, “The oxidation of nitrogen in combustion and explosion,” Acta Physicochimica USSR 21, 577–628 (1946).

Anderson, A.

A. Anderson, The Raman Effect (Marcel Dekker, 1971).

Atakan, B.

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

Barnes, F. J.

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

Berg, P. A.

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
[CrossRef]

Bessler, W. G.

Bowman, C. T.

C. T. Bowman, “Control of combustion-generated nitrogen oxide emission: technology driven by regulation,” Proc. Combust. Inst. 24, 859–878 (1992).
[CrossRef]

Brinkman, E. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

Bromly, J. H.

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

Brown, M. S.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

Crosley, D. R.

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
[CrossRef]

Daily, J. W.

J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
[CrossRef]

Davidson, D. F.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

Dibble, R. W.

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
[CrossRef]

Dillman, M.

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

DiRosa, M. D.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NOγ (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

Düwel, I.

H. Kronemayer, I. Düwel, C. Schulz, “Temperature imaging in spray flames,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Endo, A.

M. Yorozu, Y. Okada, A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev. 3, 293–298 (1996).
[CrossRef]

Flannery, B. P.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Fleming, J. W.

B. A. Williams, J. W. Fleming, “Comparative species concentrations in CH4/O4/Ar flames doped with N2O, NO and NO2,” Combust. Flame 98, 93–106 (1994).
[CrossRef]

Goss, L. P.

L. P. Goss, Instrumentation for Flows with Combustion (Academic, 1993).

Greenhalgh, D. A.

D. A. Greenhalgh, Advances in Non-Linear Spectroscopy (Wiley, 1988).

Hanson, R. K.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes,” Appl. Opt. 42, 4922–4936 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NOγ (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

R. K. Hanson, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

Hartlieb, A. T.

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

Haynes, B. S.

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

Heinze, J.

C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Heitor, M. V.

M. V. Heitor, A. L. N. Moreira, “Thermocouples and sample probes for combustion studies,” Prog. Energy Combust. Sci. 19, 259–278 (1993).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules (Krieger, 1950).

Hirano, A.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Hofmann, M.

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence (LII) for soot diagnostics at high-pressure,” Appl. Opt. 42, 2052–2062 (2003).
[CrossRef] [PubMed]

M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

Hollenbach, R. E.

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
[CrossRef]

Jander, H.

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence (LII) for soot diagnostics at high-pressure,” Appl. Opt. 42, 2052–2062 (2003).
[CrossRef] [PubMed]

M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

Jeffries, J. B.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes,” Appl. Opt. 42, 4922–4936 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
[CrossRef]

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

Klavuhn, K. G.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

Koch, J. D.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

Kock, B. F.

M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

Kohse-Höinghaus, K.

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

Kronemayer, H.

M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

H. Kronemayer, I. Düwel, C. Schulz, “Temperature imaging in spray flames,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

Kychakoff, G.

Laurendeau, N. M.

N. M. Laurendeau, “Temperature measurements by light scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

Lee, T.

Meier, U. E.

C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Moreira, A. L. N.

M. V. Heitor, A. L. N. Moreira, “Thermocouples and sample probes for combustion studies,” Prog. Energy Combust. Sci. 19, 259–278 (1993).
[CrossRef]

Muris, S.

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

Okada, Y.

M. Yorozu, Y. Okada, A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev. 3, 293–298 (1996).
[CrossRef]

Orth, A.

A. Orth, V. Sick, J. Wolfrum, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Proc. Combust. Inst. 25, 143–150 (1994).
[CrossRef]

Press, W. H.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Raiche, G. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

Reynolds, W.

W. Reynolds, Stanjan: Chemical Equilibrium Solver (Stanford University, 1987).

Sakuraya, T.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Schulz, C.

J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
[CrossRef]

W. G. Bessler, C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519–533 (2004).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence (LII) for soot diagnostics at high-pressure,” Appl. Opt. 42, 2052–2062 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes,” Appl. Opt. 42, 4922–4936 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

H. Kronemayer, I. Düwel, C. Schulz, “Temperature imaging in spray flames,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

Seitzman, J. M.

Settersten, T. B.

J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
[CrossRef]

Sick, V.

J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
[CrossRef]

C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

A. Orth, V. Sick, J. Wolfrum, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Proc. Combust. Inst. 25, 143–150 (1994).
[CrossRef]

Smith, G. P.

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
[CrossRef]

Stricker, W.

C. Schulz, V. Sick, U. E. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Stricker, W. P.

W. P. Stricker, “Measurements of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002).

Takeshita, Y.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Teukolsky, S. A.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Tsujishita, M.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Vettering, W. T.

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Vyrodov, A. O.

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Williams, B. A.

B. A. Williams, J. W. Fleming, “Comparative species concentrations in CH4/O4/Ar flames doped with N2O, NO and NO2,” Combust. Flame 98, 93–106 (1994).
[CrossRef]

Wolfrum, J.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 27, 1–41 (1998).
[CrossRef]

A. Orth, V. Sick, J. Wolfrum, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Proc. Combust. Inst. 25, 143–150 (1994).
[CrossRef]

Yokoo, M.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Yorozu, M.

M. Yorozu, Y. Okada, A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev. 3, 293–298 (1996).
[CrossRef]

You, X.

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

Zeldovich, Y.

Y. Zeldovich, “The oxidation of nitrogen in combustion and explosion,” Acta Physicochimica USSR 21, 577–628 (1946).

Acta Physicochimica USSR

Y. Zeldovich, “The oxidation of nitrogen in combustion and explosion,” Acta Physicochimica USSR 21, 577–628 (1946).

AIAA Journal

J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal 43, 458–464 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

W. G. Bessler, C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519–533 (2004).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

Chem. Phys. Lett.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

Comb. Sci. Tech.

J. H. Bromly, F. J. Barnes, S. Muris, X. You, B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech. 115, 259–296 (1996).
[CrossRef]

Combust. Flame

B. A. Williams, J. W. Fleming, “Comparative species concentrations in CH4/O4/Ar flames doped with N2O, NO and NO2,” Combust. Flame 98, 93–106 (1994).
[CrossRef]

Combust. Sci. Technol.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NOγ (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

JSME Int. J. Ser. B

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Opt. Lett.

Opt. Rev.

M. Yorozu, Y. Okada, A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev. 3, 293–298 (1996).
[CrossRef]

Proc. Combust. Inst.

J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 27, 1–41 (1998).
[CrossRef]

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
[CrossRef]

A. Orth, V. Sick, J. Wolfrum, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Proc. Combust. Inst. 25, 143–150 (1994).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2742 (2002).
[CrossRef]

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst. 27, 1377–1384 (1998).
[CrossRef]

C. T. Bowman, “Control of combustion-generated nitrogen oxide emission: technology driven by regulation,” Proc. Combust. Inst. 24, 859–878 (1992).
[CrossRef]

Prog. Energy Combust. Sci.

N. M. Laurendeau, “Temperature measurements by light scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

M. V. Heitor, A. L. N. Moreira, “Thermocouples and sample probes for combustion studies,” Prog. Energy Combust. Sci. 19, 259–278 (1993).
[CrossRef]

Other

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

W. P. Stricker, “Measurements of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002).

D. A. Greenhalgh, Advances in Non-Linear Spectroscopy (Wiley, 1988).

L. P. Goss, Instrumentation for Flows with Combustion (Academic, 1993).

A. Anderson, The Raman Effect (Marcel Dekker, 1971).

H. Kronemayer, I. Düwel, C. Schulz, “Temperature imaging in spray flames,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).

G. Herzberg, Spectra of Diatomic Molecules (Krieger, 1950).

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute, Chicago, 16–19 March 2003, paper P105, http://www.lifsim.com .

W. Reynolds, Stanjan: Chemical Equilibrium Solver (Stanford University, 1987).

W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Numerical simulation (LIFSim) of NO and O2 LIF-excitation spectra in the range of 225.8–226.2 nm at 2000 K. The scan range (225.944–226.112 nm) is located in the region of minimum O2 LIF interference. As spectra overlap caused by collisional broadening at 20 bars can be observed in the NO spectra, whereas O2 is less affected because of predissociation. The intensities of NO and O2 are on the same scale.

Fig. 2
Fig. 2

Example of sensitivity analysis by using simulated spectra with added noise (Gaussian) and fitted to extract temperature at 20 bars (225.944–226.112 nm region). Random Gaussian noise is added to simulated spectra for temperature fitting to simulate experimental conditions.

Fig. 3
Fig. 3

Sensitivity analysis of temperature fitting with respect to scan wavelength range for 2000 K. The scan range centers around 226.03 nm (O2-LIF suppression region). The signal from 40 laser pulses is averaged on a chip for each individual data point.

Fig. 4
Fig. 4

Sensitivity analysis of temperature fitting with respect to the number of individual laser experiments that are averaged on a chip at each wavelength position for 2000 K. The scan range is 225.944–226.112 nm.

Fig. 5
Fig. 5

Experimental setup (a) for NO-LIF multiline thermometry and (b) for an intrusive probe (Pt/Rh bead) infrared pyrometer measurement.

Fig. 6
Fig. 6

Raw image, scan from a camera at an individual point of excitation (p = 20 bars, λex = 226.034 nm). The white box in the center shows detection region for reconstruction of laser excitation spectrum (detection region is broadband 230–310 nm).

Fig. 7
Fig. 7

Schematic of a multiline fit routine. Sequence 1 (upper) fits all parameters to determine the laser line shape and line positions. Sequence 2 (lower) extracts temperature with a reduced number of fit parameters.

Fig. 8
Fig. 8

LIF fluorescence spectrum with NO AX(0, 0) excitation at 10 and 40 bars. The spectrum is separated into contributions from different components (NO, CO2, and O2 LIF, Rayleigh scattering). The lower part of each plot is magnified for a clearer view of the spectral separation. The baseline is defined as sum of all signals in the detection region (230–310 nm), excluding NO LIF. λex = 226.034 nm (400 ppm NO seeding, ϕ = 0.9).

Fig. 9
Fig. 9

NO addition method for the determination of the baseline strength and the nascent NO concentration at p = 30 bars. The plot shows a magnified view of the small box in the inserted graph. The NO addition is varied from 200 to 600 ppm, and NO LIF is detected with excitation at two different wavelengths. Excitations A and B refer to two different excitation wavelengths (λA, 226.03 nm; λB, 226.042 nm).

Fig. 10
Fig. 10

NO addition plots for determination of baseline strength at 10, 20, 50, and 60 bars. Two lines in each graph are linear fits to the two different excitation wavelengths. Excitations A and B refer to two different excitation wavelengths (λA, 226.03 nm; λB, 226.042 nm).

Fig. 11
Fig. 11

Multiline temperature fitting in 1–60 bars, ϕ = 0.9 CH4/air flames (NO seeding at 400 ppm). The LIF-intensity scales of the 30, 40, 50, and 60 bar figures have been magnified for viewing clarity.

Fig. 12
Fig. 12

Temperature versus pressure for the two different measurement techniques (multiline fitting, pyrometer). Adiabatic temperatures have been calculated by using the thermal equilibrium model (Stanjan37).

Fig. 13
Fig. 13

Nascent NO concentration versus pressure. Concentrations are derived from the NO addition method.

Fig. 14
Fig. 14

Spatial temperature profile (1D) along a horizontal line in the flame (3 mm above burner matrix) for 10, 20, and 40 bars. ϕ = 0.9 CH4/air flame with 400 ppm NO seeding.

Tables (1)

Tables Icon

Table 1 Comparison of Baseline Fraction (%) and Resulting Temperature from the NO Addition Method, Emission Spectra Method, and by Direct Baseline Determination from Multiline Fitting for Different Pressuresa

Metrics