Abstract

An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm−1 The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer’s Law. During several flights in May–June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty <1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Sachse, G. F. Hill, L. O. Wade, E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.
  2. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
    [CrossRef]
  3. G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
    [CrossRef]
  4. J. Podolske, M. Lowenstein, “Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere,” Appl. Opt. 32, 5324–5333 (1993).
    [CrossRef] [PubMed]
  5. G. Durry, T. Danguy, I. Pouchet, “Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes,” Appl. Opt. 41, 424–433 (2002).
    [CrossRef] [PubMed]
  6. A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
    [CrossRef]
  7. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely pioloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999).
    [CrossRef]
  8. F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
    [CrossRef] [PubMed]
  9. A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
    [CrossRef]
  10. C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Biogenic Trace Gases: Measuring Emissions from Soil and Water, P. A. Matson, R. C. Harris, eds. (Blackwell Scientific, 1995), pp. 259–290.
  11. P. Werle, “Review of recent advances in laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
    [CrossRef]
  12. P. Werle, “Diode-laser sensors for in-situ gas analysis,” in Lasers in Environmental and Life Sciences—Modern Analytical Methods, P. Hering, P. Lay, S. Stry, eds. (Springer Verlag, 2004), pp. 223–243.
    [CrossRef]
  13. M. S. Zahniser, D. D. Nelson, C. E. Kolb, “Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) sensors for combustion exhaust pollutant quantification,” in Applied Combustion Diagnostics, K. K. Hoeinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 648–668.
  14. D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
    [CrossRef]
  15. J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
    [CrossRef]
  16. R. K. Hanson, P. A. Kuntz, C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable infrared diode laser,” Appl. Opt. 16, 2045–2048 (1977).
    [CrossRef] [PubMed]
  17. P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
    [CrossRef]
  18. S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
    [CrossRef]
  19. P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
    [CrossRef]
  20. S. M. Schoenung, R. K. Hanson, “Temporally and spatially resolved measurements of fuel mole fraction in a turbulent CO diffusion flame,” in Nineteenth Symposium on Combustion (The Combustion Institute, 1982), pp. 449–458.
    [CrossRef]
  21. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ measurements of CO using diode laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
    [CrossRef]
  22. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” in Twenty-sixth Symposium on Combustion (The Combustion Institute, 1996), pp. 2851–2858.
  23. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2 and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  24. R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol. 9, 327–38 (1998).
    [CrossRef]
  25. E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive combustion control using diode-laser absorption sensors,” in Twenty-Seventh Symposium on Combustion (The Combustion Institute, 1998).
  26. S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
    [CrossRef]
  27. M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
    [CrossRef]
  28. S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
    [CrossRef] [PubMed]
  29. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3351 (1995).
    [CrossRef] [PubMed]
  30. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  31. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  32. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  33. A. O’Keefe, “Integrated cavity output analysis of ultra weak absorptions”, Chem. Phys. Lett. 293, 331–336 (1998).
    [CrossRef]
  34. J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
    [CrossRef]
  35. D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
    [CrossRef]

2004

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
[CrossRef] [PubMed]

2002

G. Durry, T. Danguy, I. Pouchet, “Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes,” Appl. Opt. 41, 424–433 (2002).
[CrossRef] [PubMed]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
[CrossRef]

2001

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

2000

1999

1998

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

P. Werle, “Review of recent advances in laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol. 9, 327–38 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

A. O’Keefe, “Integrated cavity output analysis of ultra weak absorptions”, Chem. Phys. Lett. 293, 331–336 (1998).
[CrossRef]

1997

1996

1995

1993

1992

1991

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

1988

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1987

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

1981

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

1977

Anderson, J. G.

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

Baer, D. S.

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
[CrossRef] [PubMed]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[CrossRef]

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ measurements of CO using diode laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol. 9, 327–38 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2 and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” in Twenty-sixth Symposium on Combustion (The Combustion Institute, 1996), pp. 2851–2858.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive combustion control using diode-laser absorption sensors,” in Twenty-Seventh Symposium on Combustion (The Combustion Institute, 1998).

Berden, G.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Bijnen, F. G. C.

Bornse, D. S.

A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
[CrossRef]

Burney, L. G.

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

Capasso, F.

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

Cho, A. Y.

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

Chou, S. I.

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

Collins, J. E.

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

Collison, W. K.

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

Condon, E. P.

G. W. Sachse, G. F. Hill, L. O. Wade, E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.

Connolly, J. C.

Danguy, T.

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Drummond, J. R.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Durry, G.

Engeln, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Flesch, G. J.

Fried, A.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Furlong, E. R.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” in Twenty-sixth Symposium on Combustion (The Combustion Institute, 1996), pp. 2851–2858.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive combustion control using diode-laser absorption sensors,” in Twenty-Seventh Symposium on Combustion (The Combustion Institute, 1998).

Garbuzov, D. Z.

Gmachl, C.

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

Gupta, M.

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
[CrossRef] [PubMed]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[CrossRef]

Hackstein, J. H. P.

Hanson, R. K.

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ measurements of CO using diode laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2 and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

R. K. Hanson, P. A. Kuntz, C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable infrared diode laser,” Appl. Opt. 16, 2045–2048 (1977).
[CrossRef] [PubMed]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” in Twenty-sixth Symposium on Combustion (The Combustion Institute, 1996), pp. 2851–2858.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive combustion control using diode-laser absorption sensors,” in Twenty-Seventh Symposium on Combustion (The Combustion Institute, 1998).

S. M. Schoenung, R. K. Hanson, “Temporally and spatially resolved measurements of fuel mole fraction in a turbulent CO diffusion flame,” in Nineteenth Symposium on Combustion (The Combustion Institute, 1982), pp. 449–458.
[CrossRef]

Harren, F. J. M.

Henry, B.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Herman, R. L.

Hill, G. F.

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.

Hovde, D. C.

A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
[CrossRef]

Janson, R. K.

R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol. 9, 327–38 (1998).
[CrossRef]

Kebabian, P. L.

Kolb, C. E.

M. S. Zahniser, D. D. Nelson, C. E. Kolb, “Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) sensors for combustion exhaust pollutant quantification,” in Applied Combustion Diagnostics, K. K. Hoeinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 648–668.

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Biogenic Trace Gases: Measuring Emissions from Soil and Water, P. A. Matson, R. C. Harris, eds. (Blackwell Scientific, 1995), pp. 259–290.

Kruger, C. H.

Kuntz, P. A.

Lapson, L.

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

Lowenstein, M.

Maiorov, M.

Matsika, S.

May, R. D.

McManus, J. B.

Meijer, G.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol. 9, 327–38 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2 and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

Moyer, E. J.

Nelson, D. D.

M. S. Zahniser, D. D. Nelson, C. E. Kolb, “Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) sensors for combustion exhaust pollutant quantification,” in Applied Combustion Diagnostics, K. K. Hoeinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 648–668.

Ni, T. Q.

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

O’Keefe, A.

S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
[CrossRef] [PubMed]

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[CrossRef]

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

A. O’Keefe, “Integrated cavity output analysis of ultra weak absorptions”, Chem. Phys. Lett. 293, 331–336 (1998).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Oh, D. B.

A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
[CrossRef]

Owano, T.

S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
[CrossRef] [PubMed]

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

Paul, J. B.

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[CrossRef]

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

Peeters, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Perry, M. G.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Podolske, J.

Pouchet, I.

Reuss, J.

Ritter, J. A.

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

Sachse, G. W.

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.

Scherer, J. J.

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “Temporally and spatially resolved measurements of fuel mole fraction in a turbulent CO diffusion flame,” in Nineteenth Symposium on Combustion (The Combustion Institute, 1982), pp. 449–458.
[CrossRef]

Scott, D. C.

Sewell, S.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Silver, J. A.

J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
[CrossRef]

Stanton, A. C.

A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
[CrossRef]

Varghese, P. L.

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

Wade, L. O.

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.

Wang, J.

Webster, C. R.

Werle, P.

P. Werle, “Review of recent advances in laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

P. Werle, “Diode-laser sensors for in-situ gas analysis,” in Lasers in Environmental and Life Sciences—Modern Analytical Methods, P. Hering, P. Lay, S. Stry, eds. (Springer Verlag, 2004), pp. 223–243.
[CrossRef]

Wert, B.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Williams, S.

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, D. R. Yarkony, S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett. 29, 1066–1068 (2004).
[CrossRef] [PubMed]

Wormhoudt, J. C.

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Biogenic Trace Gases: Measuring Emissions from Soil and Water, P. A. Matson, R. C. Harris, eds. (Blackwell Scientific, 1995), pp. 259–290.

Yarkony, D. R.

Zahniser, M. S.

J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3351 (1995).
[CrossRef] [PubMed]

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Biogenic Trace Gases: Measuring Emissions from Soil and Water, P. A. Matson, R. C. Harris, eds. (Blackwell Scientific, 1995), pp. 259–290.

M. S. Zahniser, D. D. Nelson, C. E. Kolb, “Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) sensors for combustion exhaust pollutant quantification,” in Applied Combustion Diagnostics, K. K. Hoeinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 648–668.

Appl. Opt.

J. Podolske, M. Lowenstein, “Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere,” Appl. Opt. 32, 5324–5333 (1993).
[CrossRef] [PubMed]

G. Durry, T. Danguy, I. Pouchet, “Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes,” Appl. Opt. 41, 424–433 (2002).
[CrossRef] [PubMed]

D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely pioloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999).
[CrossRef]

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
[CrossRef] [PubMed]

R. K. Hanson, P. A. Kuntz, C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable infrared diode laser,” Appl. Opt. 16, 2045–2048 (1977).
[CrossRef] [PubMed]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ measurements of CO using diode laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2 and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3351 (1995).
[CrossRef] [PubMed]

J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

Appl. Phys. B

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Appl. Phys. B.

D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B. 75, 261–265 (2002).
[CrossRef]

Chem. Phys. Lett.

A. O’Keefe, “Integrated cavity output analysis of ultra weak absorptions”, Chem. Phys. Lett. 293, 331–336 (1998).
[CrossRef]

M. Gupta, T. Owano, D. S. Baer, A. O’Keefe, S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett. 400, 42–46 (2004).
[CrossRef]

Combust. Sci. Technol.

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

J. Geophys. Res.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

J. Mol. Spectrosc.

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

J. Vac. Sci. Technol. A

S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
[CrossRef]

Meas. Sci. Technol.

R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol. 9, 327–38 (1998).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE 4577, 1–11 (2001).
[CrossRef]

G. W. Sachse, J. E. Collins, G. F. Hill, L. O. Wade, L. G. Burney, J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE 1433, 157–166 (1991).
[CrossRef]

Rev. Sci. Instrum.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Spectrochim. Acta Part A

P. Werle, “Review of recent advances in laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Other

P. Werle, “Diode-laser sensors for in-situ gas analysis,” in Lasers in Environmental and Life Sciences—Modern Analytical Methods, P. Hering, P. Lay, S. Stry, eds. (Springer Verlag, 2004), pp. 223–243.
[CrossRef]

M. S. Zahniser, D. D. Nelson, C. E. Kolb, “Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) sensors for combustion exhaust pollutant quantification,” in Applied Combustion Diagnostics, K. K. Hoeinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 648–668.

S. M. Schoenung, R. K. Hanson, “Temporally and spatially resolved measurements of fuel mole fraction in a turbulent CO diffusion flame,” in Nineteenth Symposium on Combustion (The Combustion Institute, 1982), pp. 449–458.
[CrossRef]

A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
[CrossRef]

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Biogenic Trace Gases: Measuring Emissions from Soil and Water, P. A. Matson, R. C. Harris, eds. (Blackwell Scientific, 1995), pp. 259–290.

G. W. Sachse, G. F. Hill, L. O. Wade, E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive combustion control using diode-laser absorption sensors,” in Twenty-Seventh Symposium on Combustion (The Combustion Institute, 1998).

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” in Twenty-sixth Symposium on Combustion (The Combustion Institute, 1996), pp. 2851–2858.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of the Carbon Monoxide Gas Analyzer optical layout.

Fig. 2
Fig. 2

(Color online) Photograph of the Carbon Monoxide Gas Analyzer designed to mount directly onto the NASA DC-8 flying laboratory.

Fig. 3
Fig. 3

Software spectrum display mode. The measured cavity-enhanced transmission intensity is shown in the top graph and is converted into an absorption spectrum in the bottom graph. The line shape in the bottom window is least-squares fit to a Voigt profile and combined with measured values of gas temperature and pressure in the cell to determine the CO mixing ratio.

Fig. 4
Fig. 4

(a) Measured CO mixing ratio (1-Hz sampling rate) as a function of time during second test flight. Note the high concentration of CO during Legs 1 and 2. (b) and (c) CO profiles for two legs of the test flight plan shown in Fig. 6. Note the pronounced higher concentration CO layer measured near 9000 ft in Leg 1 and 10,000 ft in Leg 2.

Fig. 5
Fig. 5

Flight plan for the 12 May 2004 test flight (data shown in Fig. 4). Labels indicate the approximate plan position where an increased CO layer was measured.

Fig. 6
Fig. 6

(a) Measured CO values 31-Hz sampling rate) as a function of time for the 17 May test flight. (b) Expanded view of data in (a) demonstrating the instrument ability to distinguish small changes in CO. (c) Measurements recorded with a 1-Hz sampling rate over a 60-s interval in (b) demonstrate the high precision of the instrument.

Fig. 7
Fig. 7

Measured CO mixing ratios (1-Hz sampling rate) at corresponding aircraft altitude during PAVE Science Flight (31 January 2005).

Fig. 8
Fig. 8

Measured CO mixing ratios (1-Hz sampling rate) in the reference CO gas cylinder ([CO] = 550 ppbv in air) as a function of time during the PAVE science flight. Variation in measured [CO] of less than 0.5% over 10 h in flight demonstrates that the instrument was stable and yields reproducible results without regular external calibration and that the reflectivity of the cavity mirrors remains constant.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I L C p T 2 ( 1 - R ) ( 1 - exp ( - t / τ ) ) ,             τ = L / c 1 - R ,
R = R exp [ - α ( ν ) ] ,
Δ I I o = G A 1 + G A ,

Metrics