Abstract

Hydroxyl tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 (M 2) flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form a tagging grid of OH molecules. In this study, a 7 × 7 grid of hydroxyl (OH) molecules is tracked by planar laser-induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow in the plane of the laser sheets. Velocity precision is limited by the error in finding the crossing location of the OH lines written by the excimer tag laser. With a signal-to-noise ratio of about 10 for the OH lines, the determination of the crossing location is expected to be accurate within ±0.1 pixels. Velocity precision within the freestream, where the turbulence is low, is consistent with this error. Instantaneous, single-shot measurements of two-dimensional flow patterns were made in the nonreacting M 2 flow with a wall cavity under low- and high-pressure conditions. The single-shot profiles were analyzed to yield mean and rms velocity profiles in the M 2 nonreacting flow.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
    [CrossRef]
  2. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  3. M. S. Maurice, “Laser velocimetry seed particles within compressible, vertical flows,” AIAA J. 30, 376–383 (1992).
    [CrossRef]
  4. R. J. Santoro, S. Pal, R. D. Woodward, L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).
  5. W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.
  6. M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
    [CrossRef]
  7. K. G. Klavuhn, G. Gauba, J. C. McDaniel, “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power 10, 787–797 (1994).
    [CrossRef]
  8. P. H. Paul, M. P. Lee, R. K. Hanson, “Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO,” Opt. Lett. 14, 417–419 (1989).
    [CrossRef] [PubMed]
  9. M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
    [CrossRef]
  10. J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence,” Opt. Lett. 8, 51–53 (1983).
    [CrossRef] [PubMed]
  11. A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
    [CrossRef]
  12. R. G. Seasholtz, F. J. Zupanc, S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power 8, 935–942 (1992).
    [CrossRef]
  13. R. B. Miles, W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
    [CrossRef]
  14. W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
    [CrossRef]
  15. B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
    [CrossRef]
  16. B. Stier, M. M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297–304 (1999).
    [CrossRef]
  17. P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
    [CrossRef]
  18. C. Orlemann, C. Schulz, J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
    [CrossRef]
  19. P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
    [CrossRef]
  20. H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
    [CrossRef]
  21. S. Krüger, G. Grünefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509–512 (1999).
    [CrossRef]
  22. J. M. Ress, G. Laufer, R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+tracers,” AIAA J. 33, 296–301 (1995).
    [CrossRef]
  23. R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
    [CrossRef] [PubMed]
  24. L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
    [CrossRef]
  25. R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
    [CrossRef]
  26. L. R. Boedeker, “Velocity measurement by H2O photolysis and laser-induced fluorescence of OH,” Opt. Lett. 14, 473–475 (1989).
    [CrossRef] [PubMed]
  27. D. F. Davidson, A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Continuous wave laser absorption techniques for gas dynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
    [CrossRef] [PubMed]
  28. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
    [CrossRef]
  29. L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
    [CrossRef]
  30. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
    [CrossRef]
  31. N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett. 26, 36–38 (2001).
    [CrossRef]
  32. N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
    [CrossRef]
  33. W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
    [CrossRef]
  34. A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
    [CrossRef]
  35. A. Ben-Yakar, R. K. Hanson, “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power 17, 869–877 (2001).
    [CrossRef]
  36. M. R. Gruber, A. S. Nejad, “New supersonic combustion research facility,” J. Propul. Power 11, 1080–1083 (1995).
    [CrossRef]
  37. M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
    [CrossRef]
  38. M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
    [CrossRef]
  39. J. Luque, D. R. Crosley, “LIFbase: Database and Spectral Simulation,” SRI International Report MP99-009 (1999), http://www.sri.com/psd/lifbase .
  40. C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
    [CrossRef]
  41. C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
    [CrossRef]
  42. R. K. Cohn, M. M. Koochesfahani, “The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity,” Exp. Fluids 29, S61–S69 (2000).
    [CrossRef]
  43. R. W. Pitz, J. W. Daily, “Combustion in a turbulent mixing layer formed at a rearward-facing step,” AIAA J.21, 1565–1570 (1983).
    [CrossRef]

2005 (1)

C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
[CrossRef]

2004 (2)

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
[CrossRef]

2003 (2)

W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
[CrossRef]

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

2002 (3)

W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
[CrossRef]

N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
[CrossRef]

2001 (5)

N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett. 26, 36–38 (2001).
[CrossRef]

M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
[CrossRef]

A. Ben-Yakar, R. K. Hanson, “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power 17, 869–877 (2001).
[CrossRef]

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

2000 (2)

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

R. K. Cohn, M. M. Koochesfahani, “The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity,” Exp. Fluids 29, S61–S69 (2000).
[CrossRef]

1999 (5)

S. Krüger, G. Grünefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509–512 (1999).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

C. Orlemann, C. Schulz, J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

B. Stier, M. M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297–304 (1999).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

1997 (2)

R. B. Miles, W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

1996 (2)

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
[CrossRef] [PubMed]

1995 (3)

M. R. Gruber, A. S. Nejad, “New supersonic combustion research facility,” J. Propul. Power 11, 1080–1083 (1995).
[CrossRef]

P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
[CrossRef]

J. M. Ress, G. Laufer, R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+tracers,” AIAA J. 33, 296–301 (1995).
[CrossRef]

1994 (2)

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

K. G. Klavuhn, G. Gauba, J. C. McDaniel, “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power 10, 787–797 (1994).
[CrossRef]

1992 (2)

M. S. Maurice, “Laser velocimetry seed particles within compressible, vertical flows,” AIAA J. 30, 376–383 (1992).
[CrossRef]

R. G. Seasholtz, F. J. Zupanc, S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power 8, 935–942 (1992).
[CrossRef]

1991 (2)

1989 (2)

1984 (1)

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

1983 (1)

1980 (1)

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

Adrian, R. J.

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

Allen, M.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Allen, M. G.

W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.

Arepalli, S.

W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.

Barker, P.

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
[CrossRef]

Batliwala, F.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

Baurle, R. A.

M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
[CrossRef]

Ben-Yakar, A.

A. Ben-Yakar, R. K. Hanson, “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power 17, 869–877 (2001).
[CrossRef]

Boedeker, L. R.

Booman, R. A.

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Brown, M. S.

Brown, T. M.

Carter, C. D.

C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
[CrossRef]

M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
[CrossRef]

Chang, A. Y.

Cohn, R. K.

R. K. Cohn, M. M. Koochesfahani, “The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity,” Exp. Fluids 29, S61–S69 (2000).
[CrossRef]

Daily, J. W.

R. W. Pitz, J. W. Daily, “Combustion in a turbulent mixing layer formed at a rearward-facing step,” AIAA J.21, 1565–1570 (1983).
[CrossRef]

Dam, N.

Dam, N. J.

W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
[CrossRef]

N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
[CrossRef]

Danehy, P. M.

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

Davidson, D. F.

Davis, S.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Davis, S. J.

W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.

DeBarber, P. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
[CrossRef] [PubMed]

Deusch, S.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

Dimotakis, P. E.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

DiRosa, M. D.

Donbar, J. M.

M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
[CrossRef]

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

Driscoll, J. F.

C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
[CrossRef]

Fox, J. S.

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

Frisch, U.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Gauba, G.

K. G. Klavuhn, G. Gauba, J. C. McDaniel, “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power 10, 787–797 (1994).
[CrossRef]

Gendrich, C. P.

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

Gruber, M. R.

M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
[CrossRef]

M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
[CrossRef]

M. R. Gruber, A. S. Nejad, “New supersonic combustion research facility,” J. Propul. Power 11, 1080–1083 (1995).
[CrossRef]

Grünefeld, G.

S. Krüger, G. Grünefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509–512 (1999).
[CrossRef]

Hanson, R. K.

Hassa, C.

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Hiller, B.

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence,” Opt. Lett. 8, 51–53 (1983).
[CrossRef] [PubMed]

Houwing, A. F. P.

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

Hsu, K.-Y.

C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
[CrossRef]

M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
[CrossRef]

M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
[CrossRef]

Hu, S.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

Jiang, N.

W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
[CrossRef]

Kessler, W.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Kessler, W. J.

W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.

Klavuhn, K. G.

K. G. Klavuhn, G. Gauba, J. C. McDaniel, “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power 10, 787–797 (1994).
[CrossRef]

Klein-Douwel, R. J. H.

N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
[CrossRef]

N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett. 26, 36–38 (2001).
[CrossRef]

Koochesfahani, M. M.

R. K. Cohn, M. M. Koochesfahani, “The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity,” Exp. Fluids 29, S61–S69 (2000).
[CrossRef]

B. Stier, M. M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297–304 (1999).
[CrossRef]

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

Krauss, R. H.

J. M. Ress, G. Laufer, R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+tracers,” AIAA J. 33, 296–301 (1995).
[CrossRef]

Krüger, S.

S. Krüger, G. Grünefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509–512 (1999).
[CrossRef]

Laufer, G.

J. M. Ress, G. Laufer, R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+tracers,” AIAA J. 33, 296–301 (1995).
[CrossRef]

Lee, M. P.

Legner, H.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Lempert, W.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Lempert, W. R.

W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
[CrossRef]

R. B. Miles, W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

Littleton, B.

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

Ljungberg, P.

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
[CrossRef]

Malmsten, Y.

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

Marinelli, W. J.

W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.

Mathur, T.

M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
[CrossRef]

Maurice, M. S.

M. S. Maurice, “Laser velocimetry seed particles within compressible, vertical flows,” AIAA J. 30, 376–383 (1992).
[CrossRef]

McDaniel, J. C.

K. G. Klavuhn, G. Gauba, J. C. McDaniel, “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power 10, 787–797 (1994).
[CrossRef]

J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence,” Opt. Lett. 8, 51–53 (1983).
[CrossRef] [PubMed]

McManus, K.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Miles, R. B.

R. B. Miles, W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

Mudford, N. R.

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

Mulhall, P.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Nandula, S. P.

Nejad, A. S.

M. R. Gruber, A. S. Nejad, “New supersonic combustion research facility,” J. Propul. Power 11, 1080–1083 (1995).
[CrossRef]

Noullez, A.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

O’Byrne, S.

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

Oguss, D. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Orlemann, C.

C. Orlemann, C. Schulz, J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Pal, S.

R. J. Santoro, S. Pal, R. D. Woodward, L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).

Parker, T.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Paul, P. H.

Pitz, R. W.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
[CrossRef] [PubMed]

R. W. Pitz, J. W. Daily, “Combustion in a turbulent mixing layer formed at a rearward-facing step,” AIAA J.21, 1565–1570 (1983).
[CrossRef]

Rasmussen, C. C.

C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
[CrossRef]

Ress, J. M.

J. M. Ress, G. Laufer, R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+tracers,” AIAA J. 33, 296–301 (1995).
[CrossRef]

Ribarov, L. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Rubinsztein-Dunlop, H.

P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
[CrossRef]

Rubinzstein-Dunlop, H.

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

Samimy, M.

W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
[CrossRef]

Santoro, R. J.

R. J. Santoro, S. Pal, R. D. Woodward, L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).

Schaaf, L.

R. J. Santoro, S. Pal, R. D. Woodward, L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).

Schneider, S. J.

R. G. Seasholtz, F. J. Zupanc, S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power 8, 935–942 (1992).
[CrossRef]

Schulz, C.

C. Orlemann, C. Schulz, J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Seasholtz, R. G.

R. G. Seasholtz, F. J. Zupanc, S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power 8, 935–942 (1992).
[CrossRef]

Segall, J.

Sethuram, S.

W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
[CrossRef]

Sijtsema, N. M.

N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
[CrossRef]

N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett. 26, 36–38 (2001).
[CrossRef]

Skaggs, P. A.

Smith, D. R.

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

Sonnenfroh, D.

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

Stier, B.

B. Stier, M. M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297–304 (1999).
[CrossRef]

ter Meulen, J. J.

W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
[CrossRef]

N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
[CrossRef]

N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett. 26, 36–38 (2001).
[CrossRef]

Thomas, A.

P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
[CrossRef]

Tolboom, R. A. L.

W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
[CrossRef]

van der Laan, W. P. N.

W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
[CrossRef]

Wallace, G.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Wehrmeyer, J. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Wolfrum, J.

C. Orlemann, C. Schulz, J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Woodward, R. D.

R. J. Santoro, S. Pal, R. D. Woodward, L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).

Yetter, R. A.

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
[CrossRef]

Zimmermann, M.

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

Zupanc, F. J.

R. G. Seasholtz, F. J. Zupanc, S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power 8, 935–942 (1992).
[CrossRef]

AIAA J. (7)

M. S. Maurice, “Laser velocimetry seed particles within compressible, vertical flows,” AIAA J. 30, 376–383 (1992).
[CrossRef]

M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J. 32, 1676–1682 (1994).
[CrossRef]

W. R. Lempert, N. Jiang, S. Sethuram, M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065–1070 (2002).
[CrossRef]

P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

J. M. Ress, G. Laufer, R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+tracers,” AIAA J. 33, 296–301 (1995).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J. 40, 1061–1064 (2002).
[CrossRef]

Annu. Rev. Fluid Mech. (2)

R. B. Miles, W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

App. Phys. B (1)

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B 74, 175–183 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Krüger, G. Grünefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509–512 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

Chem. Phys. Lett. (1)

C. Orlemann, C. Schulz, J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Exp. Fluid (1)

W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid 34, 531–533 (2003).
[CrossRef]

Exp. Fluids (5)

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

R. K. Cohn, M. M. Koochesfahani, “The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity,” Exp. Fluids 29, S61–S69 (2000).
[CrossRef]

B. Stier, M. M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297–304 (1999).
[CrossRef]

H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids 30, 36–42 (2001).
[CrossRef]

J. Fluid Mech. (1)

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

J. Propul. Power (7)

A. Ben-Yakar, R. K. Hanson, “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power 17, 869–877 (2001).
[CrossRef]

M. R. Gruber, A. S. Nejad, “New supersonic combustion research facility,” J. Propul. Power 11, 1080–1083 (1995).
[CrossRef]

M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power 17, 146–153 (2001).
[CrossRef]

M. R. Gruber, J. M. Donbar, C. D. Carter, K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power 20, 769–778 (2004).
[CrossRef]

R. G. Seasholtz, F. J. Zupanc, S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power 8, 935–942 (1992).
[CrossRef]

K. G. Klavuhn, G. Gauba, J. C. McDaniel, “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power 10, 787–797 (1994).
[CrossRef]

C. C. Rasmussen, J. F. Driscoll, C. D. Carter, K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power 21, 765–768 (2005).
[CrossRef]

Meas. Sci. Tech. (1)

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech. 11, 1259–1271 (2000).
[CrossRef]

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Shock Waves (1)

A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves 11, 31–42 (2001).
[CrossRef]

Spectrochim. Acta B (1)

P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B 50, 1301–1310 (1995).
[CrossRef]

Other (5)

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

R. J. Santoro, S. Pal, R. D. Woodward, L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).

W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.

R. W. Pitz, J. W. Daily, “Combustion in a turbulent mixing layer formed at a rearward-facing step,” AIAA J.21, 1565–1570 (1983).
[CrossRef]

J. Luque, D. R. Crosley, “LIFbase: Database and Spectral Simulation,” SRI International Report MP99-009 (1999), http://www.sri.com/psd/lifbase .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Mach 2 cavity-piloted flow.

Fig. 2
Fig. 2

Schematic of the HTV experimental system; f.l., focal length; M, Mach.

Fig. 3
Fig. 3

Experimental and simulated excitation scans (relative to the Q1(1) signal) across OH AX(1, 0) transitions. Broadening of the simulated spectrum (temperature T = 295 K, LIFbase version 2) was adjusted to match the experimental spectrum approximately; peak heights of the experimental and simulated Q1(1) + R2(3) line were also matched. The experimental spectrum was derived from a sequence of 600 images, each image being the sum of 5 exposures of the grid at ~295 K and 745 Torr.

Fig. 4
Fig. 4

Shadowgraph single-shot image over a rectangular cavity in a M 2 nonreacting cavity flow under low-backpressure conditions (flow is from left to right).

Fig. 5
Fig. 5

Overhead schematic of the cavity, showing the position of the HTV images with regard to the cavity steps and test section walls.

Fig. 6
Fig. 6

Averaged undelayed HTV image (at y = 15.65 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 7
Fig. 7

Single-shot HTV images, giving velocity fields with (left) an irregular and (right) a regular grid in a M 2 nonreacting scramjet cavity flow under a low-backpressure conditions (at y = 15.65 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 8
Fig. 8

Single-shot HTV images, giving velocity fields with (left) an irregular and (right) a regular grid in a M 2 nonreacting scramjet cavity flow under low-backpressure conditions (at y = −4.67 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 9
Fig. 9

Side-view schematic of the cavity, showing the profile locations along the x axis.

Fig. 10
Fig. 10

Mean velocity profiles at various streamwise (x) locations, showing the shear layer between the freestream and the cavity under low-backpressure conditions. (Near centerline, z = −3.5 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 11
Fig. 11

Rms velocity profiles at various streamwise (x) locations, showing the shear layer between the freestream and the cavity under low-backpressure conditions. (Near centerline, z = −3.5 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 12
Fig. 12

Mean velocity profiles at various streamwise (x) locations, showing the shear layer between the freestream and the cavity under high-backpressure conditions. (Near centerline, z = −3.5 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 13
Fig. 13

Rms velocity profiles at various streamwise (x) locations, showing the shear layer between the freestream and the cavity under high-backpressure conditions. (Near centerline, z = −3.5 mm, where z = 0 is the centerline of the cavity and x = 0 is at the front face of the cavity).

Fig. 14
Fig. 14

Schematic of the cavity, showing the profile locations along the z axis.

Fig. 15
Fig. 15

Mean velocity profiles at three spanwise (z) locations, showing the flow uniformity between the freestream and the cavity under low-backpressure conditions. (Approximately, x = 31 mm; x = 0 is the front face of the cavity, and z = 0 is the centerline of the cavity).

Fig. 16
Fig. 16

Rms velocity profiles at three spanwise (z) locations, showing the flow uniformity between the freestream and the cavity under low-backpressure conditions. (Approximately, x = 31 mm, where x = 0 is the front face of the cavity and z = 0 is the centerline of the cavity).

Tables (1)

Tables Icon

Table 1 Mach 2 Flow with a Wall Cavity

Metrics