Abstract

An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zhao, M.-C. Lai, D. L. Harrington, “Automotive sparkignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437–562 (1999).
    [CrossRef]
  2. M. Koenig, M. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” (SAE International, Warrendale, Pa., 1998).
    [CrossRef]
  3. T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
    [CrossRef]
  4. J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
    [CrossRef]
  5. S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
    [CrossRef]
  6. A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).
  7. J. B. Ghandhi, F. V. Bracco, “Fuel distribution effects on the combustion of a direct-injection stratified charge engine,” (SAE International, Warrendale, Pa., 1995).
    [CrossRef]
  8. T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
    [CrossRef]
  9. D. Frieden, V. Sick, “Investigation of the fuel injection, mixing and combustion processes in an SIDI engine using quasi-3D LIF imaging,” (SAE International, Warrendale, Pa., 2003).
    [CrossRef]
  10. C. Schulz, V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
    [CrossRef]
  11. B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
    [CrossRef]
  12. V. Wagner, W. Ipp, M. Wensing, A. Leipertz, “Fuel distribution and mixture formation inside a direct injection SI engine investigated by 2D Mie and LIEF techniques,” (SAE International, Warrendale, Pa., 1999).
    [CrossRef]
  13. D. A. Rothamer, J. B. Ghandhi, “Determination of flamefront equivalence ratio during stratified combustion,” , (SAE International, Warrendale, Pa., 2003).
    [CrossRef]
  14. L. Wyszynski, R. Aboagye, R. Stone, G. Kalghatgi, “Combustion imaging and analysis in a gasoline direct injection engine,” (SAE International, Warrendale, Pa., 2004).
    [CrossRef]
  15. M. C. Drake, T. D. Fansler, A. Lippert, “Stratified charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine,” Proc. Combust. Inst. 30, 2683–2691 (2004).
    [CrossRef]
  16. J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, “Application of a High-Repetition-Rate Laser Diagnostic System for Single-Cycle-Resolved Imaging in Internal Combustion Engines,” Appl. Opt. 41, 5002–5014 (2002).
    [CrossRef] [PubMed]
  17. J. Reboux, D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compressive stroke of an optical SI engine,” (SAE International, Warrendale, Pa., 1994).
  18. D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
    [CrossRef]
  19. W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
    [CrossRef]
  20. R. Zhang, N. Wermuth, V. Sick, “Impact of fluorescence tracers on combustion performance in optical engine experiments,” (SAE International, Warrendale, Pa., 2004).
    [CrossRef]
  21. W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
    [CrossRef]
  22. B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
    [CrossRef]
  23. P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
    [CrossRef]
  24. A. A. Quader, “Why intake charge dilution decreases nitric oxide emission from spark ignition engines,” (SAE International, Warrendale, Pa., 1971).
    [CrossRef]
  25. V. Sick, N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser,” Appl. Phys. B 79, 139–143 (2004).
    [CrossRef]
  26. N. Wermuth, V. Sick, “Absorption and fluorescence quantum yield measurements at elevated pressures and temperatures using an optical engine,” (SAE International, Warrendale, Pa., 2005).

2005 (3)

C. Schulz, V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
[CrossRef]

2004 (4)

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

V. Sick, N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser,” Appl. Phys. B 79, 139–143 (2004).
[CrossRef]

W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

M. C. Drake, T. D. Fansler, A. Lippert, “Stratified charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine,” Proc. Combust. Inst. 30, 2683–2691 (2004).
[CrossRef]

2003 (1)

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

2002 (3)

T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
[CrossRef]

J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, “Application of a High-Repetition-Rate Laser Diagnostic System for Single-Cycle-Resolved Imaging in Internal Combustion Engines,” Appl. Opt. 41, 5002–5014 (2002).
[CrossRef] [PubMed]

D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
[CrossRef]

2001 (1)

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[CrossRef]

2000 (1)

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

1999 (1)

F. Zhao, M.-C. Lai, D. L. Harrington, “Automotive sparkignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437–562 (1999).
[CrossRef]

Aboagye, R.

L. Wyszynski, R. Aboagye, R. Stone, G. Kalghatgi, “Combustion imaging and analysis in a gasoline direct injection engine,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Aldén, M.

Aleiferis, P.

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

Arnold, A.

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

Bracco, F. V.

J. B. Ghandhi, F. V. Bracco, “Fuel distribution effects on the combustion of a direct-injection stratified charge engine,” (SAE International, Warrendale, Pa., 1995).
[CrossRef]

Buschmann, A.

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

Christensen, M.

Cousyn, B.

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

Decker, M.

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

Drake, M. C.

B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
[CrossRef]

M. C. Drake, T. D. Fansler, A. Lippert, “Stratified charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine,” Proc. Combust. Inst. 30, 2683–2691 (2004).
[CrossRef]

T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
[CrossRef]

Einecke, S.

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Fansler, T. D.

B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
[CrossRef]

M. C. Drake, T. D. Fansler, A. Lippert, “Stratified charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine,” Proc. Combust. Inst. 30, 2683–2691 (2004).
[CrossRef]

T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
[CrossRef]

Fischer, J.

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Frieden, D.

D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
[CrossRef]

D. Frieden, V. Sick, “Investigation of the fuel injection, mixing and combustion processes in an SIDI engine using quasi-3D LIF imaging,” (SAE International, Warrendale, Pa., 2003).
[CrossRef]

Fujikawa, T.

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

Ghandhi, J. B.

J. B. Ghandhi, F. V. Bracco, “Fuel distribution effects on the combustion of a direct-injection stratified charge engine,” (SAE International, Warrendale, Pa., 1995).
[CrossRef]

D. A. Rothamer, J. B. Ghandhi, “Determination of flamefront equivalence ratio during stratified combustion,” , (SAE International, Warrendale, Pa., 2003).
[CrossRef]

Gronki, J.

D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
[CrossRef]

Hall, M.

M. Koenig, M. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” (SAE International, Warrendale, Pa., 1998).
[CrossRef]

Hanson, R. K.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Hardalupas, Y.

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

Harrington, D. L.

F. Zhao, M.-C. Lai, D. L. Harrington, “Automotive sparkignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437–562 (1999).
[CrossRef]

Hattori, Y.

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

Hult, J.

Hultqvist, A.

Ipp, W.

V. Wagner, W. Ipp, M. Wensing, A. Leipertz, “Fuel distribution and mixture formation inside a direct injection SI engine investigated by 2D Mie and LIEF techniques,” (SAE International, Warrendale, Pa., 1999).
[CrossRef]

Ishii, K.

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

Johansson, B.

Kalghatgi, G.

L. Wyszynski, R. Aboagye, R. Stone, G. Kalghatgi, “Combustion imaging and analysis in a gasoline direct injection engine,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Kanda, M.

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

Koban, W.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Kobayashi, T.

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

Koch, J.

W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

Koenig, M.

M. Koenig, M. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” (SAE International, Warrendale, Pa., 1998).
[CrossRef]

Lai, M.-C.

F. Zhao, M.-C. Lai, D. L. Harrington, “Automotive sparkignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437–562 (1999).
[CrossRef]

Leipertz, A.

V. Wagner, W. Ipp, M. Wensing, A. Leipertz, “Fuel distribution and mixture formation inside a direct injection SI engine investigated by 2D Mie and LIEF techniques,” (SAE International, Warrendale, Pa., 1999).
[CrossRef]

Lippert, A.

M. C. Drake, T. D. Fansler, A. Lippert, “Stratified charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine,” Proc. Combust. Inst. 30, 2683–2691 (2004).
[CrossRef]

Nomura, Y.

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

Nygren, J.

Puechberty, D.

J. Reboux, D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compressive stroke of an optical SI engine,” (SAE International, Warrendale, Pa., 1994).

Quader, A. A.

A. A. Quader, “Why intake charge dilution decreases nitric oxide emission from spark ignition engines,” (SAE International, Warrendale, Pa., 1971).
[CrossRef]

Reboux, J.

J. Reboux, D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compressive stroke of an optical SI engine,” (SAE International, Warrendale, Pa., 1994).

Richter, M.

Rosalik, M. E.

T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
[CrossRef]

Rothamer, D. A.

D. A. Rothamer, J. B. Ghandhi, “Determination of flamefront equivalence ratio during stratified combustion,” , (SAE International, Warrendale, Pa., 2003).
[CrossRef]

Schulz, C.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

C. Schulz, V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Sick, V.

C. Schulz, V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

V. Sick, N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser,” Appl. Phys. B 79, 139–143 (2004).
[CrossRef]

D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
[CrossRef]

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

D. Frieden, V. Sick, “Investigation of the fuel injection, mixing and combustion processes in an SIDI engine using quasi-3D LIF imaging,” (SAE International, Warrendale, Pa., 2003).
[CrossRef]

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

R. Zhang, N. Wermuth, V. Sick, “Impact of fluorescence tracers on combustion performance in optical engine experiments,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

N. Wermuth, V. Sick, “Absorption and fluorescence quantum yield measurements at elevated pressures and temperatures using an optical engine,” (SAE International, Warrendale, Pa., 2005).

Spicher, U.

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Stojkovic, B. D.

B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
[CrossRef]

T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
[CrossRef]

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[CrossRef]

Stone, R.

L. Wyszynski, R. Aboagye, R. Stone, G. Kalghatgi, “Combustion imaging and analysis in a gasoline direct injection engine,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Taylor, A. M. K. P.

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

Urata, Y.

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

Vannobel, F.

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

Velji, A.

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Wagner, V.

V. Wagner, W. Ipp, M. Wensing, A. Leipertz, “Fuel distribution and mixture formation inside a direct injection SI engine investigated by 2D Mie and LIEF techniques,” (SAE International, Warrendale, Pa., 1999).
[CrossRef]

Wensing, M.

V. Wagner, W. Ipp, M. Wensing, A. Leipertz, “Fuel distribution and mixture formation inside a direct injection SI engine investigated by 2D Mie and LIEF techniques,” (SAE International, Warrendale, Pa., 1999).
[CrossRef]

Wermuth, N.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

V. Sick, N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser,” Appl. Phys. B 79, 139–143 (2004).
[CrossRef]

N. Wermuth, V. Sick, “Absorption and fluorescence quantum yield measurements at elevated pressures and temperatures using an optical engine,” (SAE International, Warrendale, Pa., 2005).

R. Zhang, N. Wermuth, V. Sick, “Impact of fluorescence tracers on combustion performance in optical engine experiments,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Wolfrum, J.

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

Wyszynski, L.

L. Wyszynski, R. Aboagye, R. Stone, G. Kalghatgi, “Combustion imaging and analysis in a gasoline direct injection engine,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Zhang, R.

R. Zhang, N. Wermuth, V. Sick, “Impact of fluorescence tracers on combustion performance in optical engine experiments,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Zhao, F.

F. Zhao, M.-C. Lai, D. L. Harrington, “Automotive sparkignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437–562 (1999).
[CrossRef]

Zimmermann, F.

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

D. Frieden, V. Sick, J. Gronki, C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 74, 137–141 (2002).
[CrossRef]

V. Sick, N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser,” Appl. Phys. B 79, 139–143 (2004).
[CrossRef]

Combust. Flame (1)

P. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, Y. Urata, “Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine,” Combust. Flame 136, 72–90 (2004).
[CrossRef]

Int. J. Engine Res. (2)

T. Fujikawa, Y. Nomura, Y. Hattori, T. Kobayashi, M. Kanda, “Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser induced fluorescence technique,” Int. J. Engine Res. 4(2), 143–154 (2003).
[CrossRef]

T. D. Fansler, M. C. Drake, B. D. Stojkovic, M. E. Rosalik, “Local fuel concentration, ignition and combustion in a stratified charge spark ignited direct injection engine: spectroscopic, imaging and pressure-based measurements,” Int. J. Engine Res. 4(2), 61–87 (2002).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

W. Koban, J. Koch, R. K. Hanson, C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Proc. Combust. Inst. (3)

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

B. D. Stojkovic, T. D. Fansler, M. C. Drake, V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine,” Proc. Combust. Inst. 30, 2657–2665 (2005).
[CrossRef]

M. C. Drake, T. D. Fansler, A. Lippert, “Stratified charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine,” Proc. Combust. Inst. 30, 2683–2691 (2004).
[CrossRef]

Prog. Energy Combust. Sci. (2)

C. Schulz, V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

F. Zhao, M.-C. Lai, D. L. Harrington, “Automotive sparkignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437–562 (1999).
[CrossRef]

Other (12)

M. Koenig, M. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” (SAE International, Warrendale, Pa., 1998).
[CrossRef]

J. Fischer, A. Velji, U. Spicher, F. Zimmermann, C. Schulz, “Measurement of the equivalence ratio in the spark gap region of a gasoline direct injection engine with spark emission spectroscopy and tracer-LIF,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

D. Frieden, V. Sick, “Investigation of the fuel injection, mixing and combustion processes in an SIDI engine using quasi-3D LIF imaging,” (SAE International, Warrendale, Pa., 2003).
[CrossRef]

A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum, “Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine,” SAE Transactions102 (J. Engines, Sec. 4), 1–9 (1993).

J. B. Ghandhi, F. V. Bracco, “Fuel distribution effects on the combustion of a direct-injection stratified charge engine,” (SAE International, Warrendale, Pa., 1995).
[CrossRef]

J. Reboux, D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compressive stroke of an optical SI engine,” (SAE International, Warrendale, Pa., 1994).

V. Wagner, W. Ipp, M. Wensing, A. Leipertz, “Fuel distribution and mixture formation inside a direct injection SI engine investigated by 2D Mie and LIEF techniques,” (SAE International, Warrendale, Pa., 1999).
[CrossRef]

D. A. Rothamer, J. B. Ghandhi, “Determination of flamefront equivalence ratio during stratified combustion,” , (SAE International, Warrendale, Pa., 2003).
[CrossRef]

L. Wyszynski, R. Aboagye, R. Stone, G. Kalghatgi, “Combustion imaging and analysis in a gasoline direct injection engine,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

R. Zhang, N. Wermuth, V. Sick, “Impact of fluorescence tracers on combustion performance in optical engine experiments,” (SAE International, Warrendale, Pa., 2004).
[CrossRef]

A. A. Quader, “Why intake charge dilution decreases nitric oxide emission from spark ignition engines,” (SAE International, Warrendale, Pa., 1971).
[CrossRef]

N. Wermuth, V. Sick, “Absorption and fluorescence quantum yield measurements at elevated pressures and temperatures using an optical engine,” (SAE International, Warrendale, Pa., 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of viewing area within engine. Access is provided by a full-length quartz cylinder, quartz head windows, and quartz piston windows. The outline of the cylindrical piston bowl is shown as dotted lines.

Fig. 2
Fig. 2

Schematic of imaging and excitation setup. Laser beams are formed into a sheet by a cylindrical lens, then vertically brought into the cylinder. Light is collected through the quartz cylinder and quartz windows, looking from the side of the engine by way of a WG280 filter and four-way reflection filter box, UV sensitive lens, image intensifier, and high-speed camera.

Fig. 3
Fig. 3

Timing schematic, showing important events and their relative timing.

Fig. 4
Fig. 4

Sample of image set from one cycle. The first two images are of toluene LIF; subsequent images represent OH* chemiluminescence (18% N2).

Fig. 5
Fig. 5

OH* signal at select crank angles at varying levels of intake air dilution (% N2). Gate times relative to the zero dilution case are listed below the dilution levels.

Fig. 6
Fig. 6

Sequence of images showing the tendency of both the spark and flame kernel to follow the trajectory of the spray.

Fig. 7
Fig. 7

Image sequence showing the tendency of the flame kernel to follow the spray direction until striking the piston bowl, then switching direction and traversing the piston bowl. (26% N2).

Tables (1)

Tables Icon

Table 1 Engine Specifications

Metrics