Abstract

Comparisons with respect to the sooting tendency are made between stationary diffusion flames and diffusion flames with pulsations induced by oscillating fuel flow. Time-resolved measurements of the soot particle properties in the flames are obtained by combining Rayleigh-scattering, laser-induced incandescence, and extinction measurements into the RAYLIX method. Furthermore, flame luminosity at 590 nm and OH*-chemoluminescence signals at 310 nm are monitored to obtain data regarding the flame structure. Mean soot volume fractions of oscillating flames are significantly different from those of stationary flames with the same mean fuel flow rate; oscillations of the total amount of soot are phase shifted and asymmetric compared with fuel flow oscillations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Vandsburger, J. M. Seitzman, R. K. Hanson, “Visualization methods for the study of unsteady nonpremixed jet flame structure,” Combust. Sci. Technol. 59, 455–461 (1988).
    [CrossRef]
  2. A. Hamins, J. C. Yang, T. Kashiwagi, “An experimental investigation of the pulastion frequency of flames,” in Proceedings of 24th Symposium (International) on Combustion 1992 (Combustion Institute, 1993), pp. 1695–1702.
  3. B. M. Cetegen, T. A. Ahmed, “Experiments on the periodic instability of buoyant plumes and pool fires,” Combust. Flame 93, 157–184 (1993).
    [CrossRef]
  4. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Qunatitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  5. O. A. Ezekoye, K. M. Martin, F. Bisetti, “Pulsed flow modulation of soot production in a laminar jet-diffusion flame,” in Proceedings of 30th Symposium (International) on Combustion 2004 (Combustion Institute, 2005), pp. 1485–1492.
  6. B. A. Strayer, D. Dunn-Rankin, F. Jabbari, “A comparison between frequency- and amplitude-modulated adaptive control of a non-premixed flame,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, 1999), pp. 1247–1254.
  7. T. K. Kim, J. Park, H. D. Shin, “Mixing mechanism near the nozzle exit in a tone excited nonpremixed jet flame,” Combust. Sci. Technol. 89, 83–100 (1993).
    [CrossRef]
  8. M. Saito, M. Sato, A. Nishimura, “Soot suppression by acoustic oscillated combustion,” Fuel 77, 973–978 (1998).
    [CrossRef]
  9. G. Papadopoulos, R. A. Bryant, W. M. Pitts, “Flow characterization of flickering methane/air diffusion flames using particle image velocimetry,” Exp. Fluids 33, 472–481 (2002).
    [CrossRef]
  10. H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, Pittsburgh, 1999), pp. 1613–1621.
  11. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
    [CrossRef]
  12. A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
    [CrossRef]
  13. R. K. Hanson, “Combustion diagnostics planar imaging techniques,” in Proceedings of 21st Symposium (International) on Combustion 1986 (Combustion Institute, 1988), pp. 1677–1691.
  14. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
    [CrossRef] [PubMed]
  15. D. S. Dandy, S. R. Vosen, “Numerical and experimental studies of hydroxyl radical chemoluminescence in methane air flames,” Combust. Sci. Technol. 82, 131–150 (1992).
    [CrossRef]
  16. J. Appel, H. Bockhorn, M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame 121, 122–136 (2000).
    [CrossRef]

2002

G. Papadopoulos, R. A. Bryant, W. M. Pitts, “Flow characterization of flickering methane/air diffusion flames using particle image velocimetry,” Exp. Fluids 33, 472–481 (2002).
[CrossRef]

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

2000

J. Appel, H. Bockhorn, M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame 121, 122–136 (2000).
[CrossRef]

1998

M. Saito, M. Sato, A. Nishimura, “Soot suppression by acoustic oscillated combustion,” Fuel 77, 973–978 (1998).
[CrossRef]

1994

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Qunatitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

1993

T. K. Kim, J. Park, H. D. Shin, “Mixing mechanism near the nozzle exit in a tone excited nonpremixed jet flame,” Combust. Sci. Technol. 89, 83–100 (1993).
[CrossRef]

B. M. Cetegen, T. A. Ahmed, “Experiments on the periodic instability of buoyant plumes and pool fires,” Combust. Flame 93, 157–184 (1993).
[CrossRef]

1992

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
[CrossRef] [PubMed]

D. S. Dandy, S. R. Vosen, “Numerical and experimental studies of hydroxyl radical chemoluminescence in methane air flames,” Combust. Sci. Technol. 82, 131–150 (1992).
[CrossRef]

1988

U. Vandsburger, J. M. Seitzman, R. K. Hanson, “Visualization methods for the study of unsteady nonpremixed jet flame structure,” Combust. Sci. Technol. 59, 455–461 (1988).
[CrossRef]

Ahmed, T. A.

B. M. Cetegen, T. A. Ahmed, “Experiments on the periodic instability of buoyant plumes and pool fires,” Combust. Flame 93, 157–184 (1993).
[CrossRef]

Appel, J.

J. Appel, H. Bockhorn, M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame 121, 122–136 (2000).
[CrossRef]

Arnold, A.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Bisetti, F.

O. A. Ezekoye, K. M. Martin, F. Bisetti, “Pulsed flow modulation of soot production in a laminar jet-diffusion flame,” in Proceedings of 30th Symposium (International) on Combustion 2004 (Combustion Institute, 2005), pp. 1485–1492.

Bockhorn, H.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

J. Appel, H. Bockhorn, M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame 121, 122–136 (2000).
[CrossRef]

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, Pittsburgh, 1999), pp. 1613–1621.

Bouché, T.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Bryant, R. A.

G. Papadopoulos, R. A. Bryant, W. M. Pitts, “Flow characterization of flickering methane/air diffusion flames using particle image velocimetry,” Exp. Fluids 33, 472–481 (2002).
[CrossRef]

Cetegen, B. M.

B. M. Cetegen, T. A. Ahmed, “Experiments on the periodic instability of buoyant plumes and pool fires,” Combust. Flame 93, 157–184 (1993).
[CrossRef]

Dandy, D. S.

D. S. Dandy, S. R. Vosen, “Numerical and experimental studies of hydroxyl radical chemoluminescence in methane air flames,” Combust. Sci. Technol. 82, 131–150 (1992).
[CrossRef]

Dasch, C. J.

Dunn-Rankin, D.

B. A. Strayer, D. Dunn-Rankin, F. Jabbari, “A comparison between frequency- and amplitude-modulated adaptive control of a non-premixed flame,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, 1999), pp. 1247–1254.

Ezekoye, O. A.

O. A. Ezekoye, K. M. Martin, F. Bisetti, “Pulsed flow modulation of soot production in a laminar jet-diffusion flame,” in Proceedings of 30th Symposium (International) on Combustion 2004 (Combustion Institute, 2005), pp. 1485–1492.

Frenklach, M.

J. Appel, H. Bockhorn, M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame 121, 122–136 (2000).
[CrossRef]

Geitlinger, H.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, Pittsburgh, 1999), pp. 1613–1621.

Hamins, A.

A. Hamins, J. C. Yang, T. Kashiwagi, “An experimental investigation of the pulastion frequency of flames,” in Proceedings of 24th Symposium (International) on Combustion 1992 (Combustion Institute, 1993), pp. 1695–1702.

Hanson, R. K.

U. Vandsburger, J. M. Seitzman, R. K. Hanson, “Visualization methods for the study of unsteady nonpremixed jet flame structure,” Combust. Sci. Technol. 59, 455–461 (1988).
[CrossRef]

R. K. Hanson, “Combustion diagnostics planar imaging techniques,” in Proceedings of 21st Symposium (International) on Combustion 1986 (Combustion Institute, 1988), pp. 1677–1691.

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Qunatitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Heitzmann, T.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Jabbari, F.

B. A. Strayer, D. Dunn-Rankin, F. Jabbari, “A comparison between frequency- and amplitude-modulated adaptive control of a non-premixed flame,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, 1999), pp. 1247–1254.

Jungfleisch, B.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Kashiwagi, T.

A. Hamins, J. C. Yang, T. Kashiwagi, “An experimental investigation of the pulastion frequency of flames,” in Proceedings of 24th Symposium (International) on Combustion 1992 (Combustion Institute, 1993), pp. 1695–1702.

Ketterle, W.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Kim, T. K.

T. K. Kim, J. Park, H. D. Shin, “Mixing mechanism near the nozzle exit in a tone excited nonpremixed jet flame,” Combust. Sci. Technol. 89, 83–100 (1993).
[CrossRef]

Lange, B.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Lehre, T.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Martin, K. M.

O. A. Ezekoye, K. M. Martin, F. Bisetti, “Pulsed flow modulation of soot production in a laminar jet-diffusion flame,” in Proceedings of 30th Symposium (International) on Combustion 2004 (Combustion Institute, 2005), pp. 1485–1492.

Monkhouse, P.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Nishimura, A.

M. Saito, M. Sato, A. Nishimura, “Soot suppression by acoustic oscillated combustion,” Fuel 77, 973–978 (1998).
[CrossRef]

Papadopoulos, G.

G. Papadopoulos, R. A. Bryant, W. M. Pitts, “Flow characterization of flickering methane/air diffusion flames using particle image velocimetry,” Exp. Fluids 33, 472–481 (2002).
[CrossRef]

Park, J.

T. K. Kim, J. Park, H. D. Shin, “Mixing mechanism near the nozzle exit in a tone excited nonpremixed jet flame,” Combust. Sci. Technol. 89, 83–100 (1993).
[CrossRef]

Pitts, W. M.

G. Papadopoulos, R. A. Bryant, W. M. Pitts, “Flow characterization of flickering methane/air diffusion flames using particle image velocimetry,” Exp. Fluids 33, 472–481 (2002).
[CrossRef]

Saito, M.

M. Saito, M. Sato, A. Nishimura, “Soot suppression by acoustic oscillated combustion,” Fuel 77, 973–978 (1998).
[CrossRef]

Sato, M.

M. Saito, M. Sato, A. Nishimura, “Soot suppression by acoustic oscillated combustion,” Fuel 77, 973–978 (1998).
[CrossRef]

Schiff, G.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Schön, A.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Seitzman, J. M.

U. Vandsburger, J. M. Seitzman, R. K. Hanson, “Visualization methods for the study of unsteady nonpremixed jet flame structure,” Combust. Sci. Technol. 59, 455–461 (1988).
[CrossRef]

Shaddix, C. R.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Qunatitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Shin, H. D.

T. K. Kim, J. Park, H. D. Shin, “Mixing mechanism near the nozzle exit in a tone excited nonpremixed jet flame,” Combust. Sci. Technol. 89, 83–100 (1993).
[CrossRef]

Smyth, K. C.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Qunatitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Strayer, B. A.

B. A. Strayer, D. Dunn-Rankin, F. Jabbari, “A comparison between frequency- and amplitude-modulated adaptive control of a non-premixed flame,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, 1999), pp. 1247–1254.

Streibel, T.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, Pittsburgh, 1999), pp. 1613–1621.

Suntz, R.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, Pittsburgh, 1999), pp. 1613–1621.

Vandsburger, U.

U. Vandsburger, J. M. Seitzman, R. K. Hanson, “Visualization methods for the study of unsteady nonpremixed jet flame structure,” Combust. Sci. Technol. 59, 455–461 (1988).
[CrossRef]

Vosen, S. R.

D. S. Dandy, S. R. Vosen, “Numerical and experimental studies of hydroxyl radical chemoluminescence in methane air flames,” Combust. Sci. Technol. 82, 131–150 (1992).
[CrossRef]

Wolfrum, J.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Yang, J. C.

A. Hamins, J. C. Yang, T. Kashiwagi, “An experimental investigation of the pulastion frequency of flames,” in Proceedings of 24th Symposium (International) on Combustion 1992 (Combustion Institute, 1993), pp. 1695–1702.

Appl. Opt.

Ber. Bunsenges. Phys. Chem.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992).
[CrossRef]

Combust. Flame

J. Appel, H. Bockhorn, M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame 121, 122–136 (2000).
[CrossRef]

B. M. Cetegen, T. A. Ahmed, “Experiments on the periodic instability of buoyant plumes and pool fires,” Combust. Flame 93, 157–184 (1993).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Qunatitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Combust. Sci. Technol.

U. Vandsburger, J. M. Seitzman, R. K. Hanson, “Visualization methods for the study of unsteady nonpremixed jet flame structure,” Combust. Sci. Technol. 59, 455–461 (1988).
[CrossRef]

T. K. Kim, J. Park, H. D. Shin, “Mixing mechanism near the nozzle exit in a tone excited nonpremixed jet flame,” Combust. Sci. Technol. 89, 83–100 (1993).
[CrossRef]

D. S. Dandy, S. R. Vosen, “Numerical and experimental studies of hydroxyl radical chemoluminescence in methane air flames,” Combust. Sci. Technol. 82, 131–150 (1992).
[CrossRef]

Exp. Fluids

G. Papadopoulos, R. A. Bryant, W. M. Pitts, “Flow characterization of flickering methane/air diffusion flames using particle image velocimetry,” Exp. Fluids 33, 472–481 (2002).
[CrossRef]

Fuel

M. Saito, M. Sato, A. Nishimura, “Soot suppression by acoustic oscillated combustion,” Fuel 77, 973–978 (1998).
[CrossRef]

Phys. Chem. Chem. Phys.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Other

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, Pittsburgh, 1999), pp. 1613–1621.

R. K. Hanson, “Combustion diagnostics planar imaging techniques,” in Proceedings of 21st Symposium (International) on Combustion 1986 (Combustion Institute, 1988), pp. 1677–1691.

A. Hamins, J. C. Yang, T. Kashiwagi, “An experimental investigation of the pulastion frequency of flames,” in Proceedings of 24th Symposium (International) on Combustion 1992 (Combustion Institute, 1993), pp. 1695–1702.

O. A. Ezekoye, K. M. Martin, F. Bisetti, “Pulsed flow modulation of soot production in a laminar jet-diffusion flame,” in Proceedings of 30th Symposium (International) on Combustion 2004 (Combustion Institute, 2005), pp. 1485–1492.

B. A. Strayer, D. Dunn-Rankin, F. Jabbari, “A comparison between frequency- and amplitude-modulated adaptive control of a non-premixed flame,” in Proceedings of 27th Symposium (International) on Combustion 1998 (Combustion Institute, 1999), pp. 1247–1254.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Setup of the burner inside the pressure chamber (TC, thermocouple; MFC, mass flow controller; PC, pressure controller; MV, magnetic valve; PWM, pulse-width modulation).

Fig. 2
Fig. 2

Results from the CTA at 2 mm above the center of the burner. The axial velocity component is given as percent of the average velocity.

Fig. 3
Fig. 3

Setup of the RAYLIX techniques. A laser beam from a frequency-doubled Nd:YAG laser is split into two partial beams. One of them is delayed by 20 ns with respect to the other. Both beams pass a telescope and form a light sheet with a smooth focus line inside the flame. The first beam induces the Rayleigh scattering and is used for the evaluation of the extinction. Both signals are recorded with one intensified CCD camera. The LII signal is detected with a second camera after the induction by the delayed beam.

Fig. 4
Fig. 4

Results from the RAYLIX measurements. (a) Soot volume fraction and particle number densities in the stationary flame. (b) Soot volume fractions in the oscillating flame. The time interval between the images is 10 ms. (c) Corresponding particle number densities. (d) Results from the CTA as seen in Fig. 2.

Fig. 5
Fig. 5

(a) Luminosity and OH* emission in the stationary flame. (b) Luminosity in the oscillating flame. The time interval between the images is 10 ms. (c) Corresponding images of the OH* radiation.

Fig. 6
Fig. 6

Images of the (a) luminosity and (b) OH* emission. The images are taken at a delay of Δt = 15 ms; they fit between the second and third frames in Figs. 5(b) and 5(c).

Fig. 7
Fig. 7

Maximum value of the soot volume fraction for each height above the burner plotted against its height (on the upright axis).

Fig. 8
Fig. 8

Temporal evolution of the soot mass in the cross section given by the light sheet during one period. The data are normalized to the value of the stationary flame. The dashed line indicates the time-averaged value of one period. For comparison the data of the CTA as in Fig. 2 are given.

Fig. 9
Fig. 9

Temporal evolution of the particle numbers in the cross section given by the light sheet during one period. The data are normalized to the value of the stationary flame. The dashed line indicates the time-averaged value of one period.

Fig. 10
Fig. 10

Temporal evolution of the total OH* emission in the flame during one period. The data are normalized to the value of the stationary flame. The dashed line indicates the time-averaged value of one period.

Fig. 11
Fig. 11

Profiles of luminosity at 590 nm and OH* emission in arbitrary units at two different heights above the burner (as given in the figure) for the stationary flame.

Fig. 12
Fig. 12

Profiles of luminosity at 590 nm and OH* emission in arbitrary units at two different heights above the burner (as given in the figure) for the oscillating flame during the build up phase at (a) Δt = 50 ms and (b) Δt = 0 ms.

Fig. 13
Fig. 13

Profiles of luminosity at 590 nm and OH* emission in arbitrary units at two different heights above the burner (as given in the figure) for the oscillating flame during the collapsing phase at (a) Δt = 10 ms and (b) Δt = 15 ms.

Fig. 14
Fig. 14

OH and CH concentration (arbitrary units) and soot volume fraction as a function of mixture fraction; calculated as a stationary methane–air flamelet at 2.5 bars (1875 torr) scalar dissipation rate 1 s−1 with the SOFOKLES code.16

Metrics