Abstract

Cavity ring-down spectroscopy (CRDS) was applied in several fuel-rich, one-dimensional, premixed C3H6/O2/Ar flames at 50 mbars (37.5 torr) to measure absolute OH, HCO, and 1CH2 concentration as well as temperature as a function of stoichiometry. Although these flames near the sooting limit present a complex chemical environment, significant spectral interferences were found to be absent. Specific aspects of the CRDS technique for measurement of temperature and radical concentration profiles are discussed; and the results are analyzed in comparison with flame model simulations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Glassman, Combustion2nd ed. (Academic, 1987).
  2. J. A. Miller, M. J. Pilling, J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst. 30, 43–88 (2004).
    [CrossRef]
  3. R. K. Hanson, “Shock tube spectroscopy: advanced instrumentation with a tunable diode laser,” Appl. Opt. 16, 1479–1481 (1977).
    [CrossRef]
  4. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature-field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  5. S. T. Sanders, J. Wang, J. B. Jeffries, R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
    [CrossRef]
  6. E. L. Petersen, D. F. Davidson, R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame 117, 272–290 (1999).
    [CrossRef]
  7. C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” submitted to Prog. Energy. Combust. Sci.
  8. K. C. Smyth, D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), Chap. 2, pp. 9–68.
  9. A. Brockhinke, M. A. Linne, “Short-pulse techniques: picosecond fluorescence, energy transfer, and quench-free measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002), Chap. 5, pp. 128–154.
  10. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  11. B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
    [CrossRef]
  12. B. Atakan, H. Böhm, K. Kohse-Höinghaus, “Fuel-rich chemistry and soot precursors,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 289–316.
  13. B. Atakan, A. Lamprecht, K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame 133, 431–440, (2003).
    [CrossRef]
  14. K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
    [CrossRef]
  15. K.-H. Homann, Fullerenes and soot formation—new pathways to large particles in flames, Angew. Chem. Int. Ed. Engl. 37, 2434–2451 (1998).
    [CrossRef]
  16. J. A. Miller, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst. 26, 461–480 (1996).
    [CrossRef]
  17. E. Goos, M. Braun-Unkhoff, “DLR-mechanism,” DLR, Stuttgart (personal communication, 2004).
  18. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  19. A. McIlroy, J. B. Jeffries, “Cavity ringdown spectroscopy for concentration measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 98–127.
  20. K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy—an Ultratrace-Absorption Measurement Technique (Oxford U. Press, 1999).
    [CrossRef]
  21. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  22. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  23. A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
    [CrossRef]
  24. A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).
  25. M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.
  26. A. McIlroy, “Laser studies of small radicals in rich methane flames: OH, HCO, and 1CH2,” Isr. J. Chem. 39, 55–62 (1999).
    [CrossRef]
  27. C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
    [CrossRef]
  28. C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
    [CrossRef]
  29. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
    [CrossRef]
  30. A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
    [CrossRef]
  31. A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame 121, 610–624 (2000).
    [CrossRef]
  32. X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
    [CrossRef]
  33. K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
    [CrossRef]
  34. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
    [CrossRef]
  35. C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech. 171, 163–190 (2001).
    [CrossRef]
  36. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spec. Rad. Trans. 2, 97–199 (1962).
    [CrossRef]
  37. H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
    [CrossRef]
  38. W. M. Vaidya, “Spectrum of the flame of ethylene,” Proc. R. Soc. A 147, 513–521 (1934).
    [CrossRef]
  39. G. Herzberg, D. A. Ramsay, “The 7500 to 4500 Å absorption system of the free HCO radical,” Proc. R. Soc. A 233, 34–54 (1955).
    [CrossRef]
  40. J. W. C. Johns, D. A. Ramsay, S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc. 35, 90–104 (1963).
    [CrossRef]
  41. J. M. Brown, D. A. Ramsay, “Axis switching in the Ã2A″–X˜2A′ transition of HCO: determination of molecular geometry,” Can. J. Phys. 53, 2232–2241 (1975).
    [CrossRef]
  42. J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
    [CrossRef]
  43. E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
    [CrossRef]
  44. S. Cheskis, “Intracavity laser-absorption spectroscopy detection of HCO radicals in atmospheric-pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
    [CrossRef]
  45. V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
    [CrossRef]
  46. V. A. Lozovsky, I. Derzy, S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst. 27, 445–452 (1998).
    [CrossRef]
  47. J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
    [CrossRef]
  48. R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
    [CrossRef]
  49. R. Vasudev, R. N. Zare, “Laser optogalvanic study of HCO A state predissociation, J. Chem. Phys. 76, 5267–5270 (1982).
    [CrossRef]
  50. A. O. Langford, C. B. Moore, “Reaction and relaxation of vibrationally excited formyl radicals,” J. Chem. Phys. 80, 4204–4210 (1984).
    [CrossRef]
  51. J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
    [CrossRef]
  52. L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
    [CrossRef]
  53. L. Serrano-Andrés, N. Forsberg, P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys. 108, 7202–7216 (1998).
    [CrossRef]
  54. C. J. Pope, J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst. 28, 1519–1527 (2000).
    [CrossRef]
  55. A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
    [CrossRef]
  56. L. Prada, J. A. Miller, “Reburning using several hydrocarbon fuels: a kinetic modeling study,” Combust. Sci. Technol. 132, 225–250 (1998).
    [CrossRef]
  57. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissiansky, Z. Qin, GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/ (2002).
  58. A. D. Sappey, D. R. Crosley, R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B 50, 463–472 (1990).
    [CrossRef]
  59. S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
    [CrossRef]
  60. I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett. 313, 121–128 (1999).
    [CrossRef]
  61. G. Herzberg, J. W. C. Johns, “The spectrum and structure of singlet CH2,” Proc. R. Soc. A 295, 107–128 (1966).
    [CrossRef]
  62. I. Garcia-Moreno, C. B. Moore, “Spectroscopy of methylene: Einstein coefficients for CH (b˜1B1–α˜1A1) transitions,” J. Chem. Phys. 99, 6429–6435 (1993).
    [CrossRef]
  63. R. C. Hilborn, “Einstein coefficients, cross-sections, f values, dipole-moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
    [CrossRef]
  64. H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
    [CrossRef]
  65. H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
    [CrossRef]
  66. D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
    [CrossRef]
  67. R. J. Kee, F. M. Rupley, J. Miller, “CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics,” (1982).
  68. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, (Sandia National Laboratories, 1985).
  69. K. Hoyermann, F. Mauss, T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys. 6, 3824–3835 (2004).
    [CrossRef]
  70. H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
    [CrossRef]
  71. H. Richter, W. J. Grieco, J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame 119, 1–22 (1999).
    [CrossRef]
  72. H. Böhm, M. Braun-Unkhoff, P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn. 3, 145–150 (2003).
    [CrossRef]

2005 (1)

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

2004 (5)

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
[CrossRef]

L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
[CrossRef]

K. Hoyermann, F. Mauss, T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys. 6, 3824–3835 (2004).
[CrossRef]

J. A. Miller, M. J. Pilling, J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst. 30, 43–88 (2004).
[CrossRef]

2003 (5)

H. Böhm, M. Braun-Unkhoff, P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn. 3, 145–150 (2003).
[CrossRef]

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
[CrossRef]

B. Atakan, A. Lamprecht, K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame 133, 431–440, (2003).
[CrossRef]

2002 (2)

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

2001 (2)

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech. 171, 163–190 (2001).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

2000 (4)

C. J. Pope, J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst. 28, 1519–1527 (2000).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame 121, 610–624 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

1999 (5)

A. McIlroy, “Laser studies of small radicals in rich methane flames: OH, HCO, and 1CH2,” Isr. J. Chem. 39, 55–62 (1999).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame 117, 272–290 (1999).
[CrossRef]

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

H. Richter, W. J. Grieco, J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame 119, 1–22 (1999).
[CrossRef]

1998 (8)

L. Serrano-Andrés, N. Forsberg, P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys. 108, 7202–7216 (1998).
[CrossRef]

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

L. Prada, J. A. Miller, “Reburning using several hydrocarbon fuels: a kinetic modeling study,” Combust. Sci. Technol. 132, 225–250 (1998).
[CrossRef]

B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
[CrossRef]

K.-H. Homann, Fullerenes and soot formation—new pathways to large particles in flames, Angew. Chem. Int. Ed. Engl. 37, 2434–2451 (1998).
[CrossRef]

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
[CrossRef]

V. A. Lozovsky, I. Derzy, S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst. 27, 445–452 (1998).
[CrossRef]

1997 (4)

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

1996 (1)

J. A. Miller, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst. 26, 461–480 (1996).
[CrossRef]

1995 (2)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

S. Cheskis, “Intracavity laser-absorption spectroscopy detection of HCO radicals in atmospheric-pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
[CrossRef]

1994 (2)

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

1993 (1)

I. Garcia-Moreno, C. B. Moore, “Spectroscopy of methylene: Einstein coefficients for CH (b˜1B1–α˜1A1) transitions,” J. Chem. Phys. 99, 6429–6435 (1993).
[CrossRef]

1990 (2)

A. D. Sappey, D. R. Crosley, R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B 50, 463–472 (1990).
[CrossRef]

J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
[CrossRef]

1989 (1)

D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1987 (2)

H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
[CrossRef]

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

1986 (1)

J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
[CrossRef]

1985 (1)

1984 (1)

A. O. Langford, C. B. Moore, “Reaction and relaxation of vibrationally excited formyl radicals,” J. Chem. Phys. 80, 4204–4210 (1984).
[CrossRef]

1982 (2)

R. Vasudev, R. N. Zare, “Laser optogalvanic study of HCO A state predissociation, J. Chem. Phys. 76, 5267–5270 (1982).
[CrossRef]

R. C. Hilborn, “Einstein coefficients, cross-sections, f values, dipole-moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

1977 (1)

1975 (1)

J. M. Brown, D. A. Ramsay, “Axis switching in the Ã2A″–X˜2A′ transition of HCO: determination of molecular geometry,” Can. J. Phys. 53, 2232–2241 (1975).
[CrossRef]

1966 (1)

G. Herzberg, J. W. C. Johns, “The spectrum and structure of singlet CH2,” Proc. R. Soc. A 295, 107–128 (1966).
[CrossRef]

1963 (1)

J. W. C. Johns, D. A. Ramsay, S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc. 35, 90–104 (1963).
[CrossRef]

1962 (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spec. Rad. Trans. 2, 97–199 (1962).
[CrossRef]

1955 (1)

G. Herzberg, D. A. Ramsay, “The 7500 to 4500 Å absorption system of the free HCO radical,” Proc. R. Soc. A 233, 34–54 (1955).
[CrossRef]

1934 (1)

W. M. Vaidya, “Spectrum of the flame of ethylene,” Proc. R. Soc. A 147, 513–521 (1934).
[CrossRef]

Aldén, M.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
[CrossRef]

Atakan, B.

B. Atakan, A. Lamprecht, K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame 133, 431–440, (2003).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame 121, 610–624 (2000).
[CrossRef]

B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
[CrossRef]

C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” submitted to Prog. Energy. Combust. Sci.

B. Atakan, H. Böhm, K. Kohse-Höinghaus, “Fuel-rich chemistry and soot precursors,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 289–316.

Baggott, J. E.

J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
[CrossRef]

Barj, M.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Barlow, R. S.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Birss, F. W.

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

Böhm, H.

H. Böhm, M. Braun-Unkhoff, P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn. 3, 145–150 (2003).
[CrossRef]

B. Atakan, H. Böhm, K. Kohse-Höinghaus, “Fuel-rich chemistry and soot precursors,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 289–316.

Boogaarts, M. G. H.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Brand, J.

B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
[CrossRef]

Braun-Unkhoff, M.

H. Böhm, M. Braun-Unkhoff, P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn. 3, 145–150 (2003).
[CrossRef]

M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.

E. Goos, M. Braun-Unkhoff, “DLR-mechanism,” DLR, Stuttgart (personal communication, 2004).

Brockhinke, A.

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
[CrossRef]

A. Brockhinke, M. A. Linne, “Short-pulse techniques: picosecond fluorescence, energy transfer, and quench-free measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002), Chap. 5, pp. 128–154.

Brown, J. M.

J. M. Brown, D. A. Ramsay, “Axis switching in the Ã2A″–X˜2A′ transition of HCO: determination of molecular geometry,” Can. J. Phys. 53, 2232–2241 (1975).
[CrossRef]

Bultitude, K.

A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
[CrossRef]

Bunker, P. R.

D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
[CrossRef]

Busch, K. W.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy—an Ultratrace-Absorption Measurement Technique (Oxford U. Press, 1999).
[CrossRef]

Busch, M. A.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy—an Ultratrace-Absorption Measurement Technique (Oxford U. Press, 1999).
[CrossRef]

Chapput, A.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Cheskis, S.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

V. A. Lozovsky, I. Derzy, S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst. 27, 445–452 (1998).
[CrossRef]

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

S. Cheskis, “Intracavity laser-absorption spectroscopy detection of HCO radicals in atmospheric-pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
[CrossRef]

Chesnokov, E. N.

L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
[CrossRef]

Comeau, D. C.

D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
[CrossRef]

Copeland, R. A.

A. D. Sappey, D. R. Crosley, R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B 50, 463–472 (1990).
[CrossRef]

Crosley, D. R.

E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
[CrossRef]

A. D. Sappey, D. R. Crosley, R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B 50, 463–472 (1990).
[CrossRef]

J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
[CrossRef]

K. C. Smyth, D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), Chap. 2, pp. 9–68.

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spec. Rad. Trans. 2, 97–199 (1962).
[CrossRef]

Darwin, D. C.

H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
[CrossRef]

Davidson, D. F.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame 117, 272–290 (1999).
[CrossRef]

De Goey, L. P. H.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Derzy, I.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

V. A. Lozovsky, I. Derzy, S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst. 27, 445–452 (1998).
[CrossRef]

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

Desgroux, P.

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

Diau, E. W. G.

E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spec. Rad. Trans. 2, 97–199 (1962).
[CrossRef]

Dreyer, C. B.

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech. 171, 163–190 (2001).
[CrossRef]

Evertsen, R.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

Ewart, P.

A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
[CrossRef]

Forsberg, N.

L. Serrano-Andrés, N. Forsberg, P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys. 108, 7202–7216 (1998).
[CrossRef]

Frank, P.

H. Böhm, M. Braun-Unkhoff, P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn. 3, 145–150 (2003).
[CrossRef]

M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.

Frenklach, M.

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

Frey, H. M.

J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
[CrossRef]

Garcia-Moreno, I.

I. Garcia-Moreno, C. B. Moore, “Spectroscopy of methylene: Einstein coefficients for CH (b˜1B1–α˜1A1) transitions,” J. Chem. Phys. 99, 6429–6435 (1993).
[CrossRef]

Glassman, I.

I. Glassman, Combustion2nd ed. (Academic, 1987).

Goos, E.

E. Goos, M. Braun-Unkhoff, “DLR-mechanism,” DLR, Stuttgart (personal communication, 2004).

Grcar, J. F.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, (Sandia National Laboratories, 1985).

Grieco, W. J.

H. Richter, W. J. Grieco, J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame 119, 1–22 (1999).
[CrossRef]

Hanson, R. K.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame 117, 272–290 (1999).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature-field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

R. K. Hanson, “Shock tube spectroscopy: advanced instrumentation with a tunable diode laser,” Appl. Opt. 16, 1479–1481 (1977).
[CrossRef]

Hartlieb, A. T.

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame 121, 610–624 (2000).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
[CrossRef]

Hermanns, R. T. E.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

Herzberg, G.

G. Herzberg, J. W. C. Johns, “The spectrum and structure of singlet CH2,” Proc. R. Soc. A 295, 107–128 (1966).
[CrossRef]

G. Herzberg, D. A. Ramsay, “The 7500 to 4500 Å absorption system of the free HCO radical,” Proc. R. Soc. A 233, 34–54 (1955).
[CrossRef]

Hilborn, R. C.

R. C. Hilborn, “Einstein coefficients, cross-sections, f values, dipole-moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

Homann, K.-H.

K.-H. Homann, Fullerenes and soot formation—new pathways to large particles in flames, Angew. Chem. Int. Ed. Engl. 37, 2434–2451 (1998).
[CrossRef]

Howard, J. B.

H. Richter, W. J. Grieco, J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame 119, 1–22 (1999).
[CrossRef]

Hoyermann, K.

K. Hoyermann, F. Mauss, T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys. 6, 3824–3835 (2004).
[CrossRef]

Jeffries, J. B.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
[CrossRef]

J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
[CrossRef]

A. McIlroy, J. B. Jeffries, “Cavity ringdown spectroscopy for concentration measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 98–127.

Jensen, P.

D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
[CrossRef]

Johns, J. W. C.

G. Herzberg, J. W. C. Johns, “The spectrum and structure of singlet CH2,” Proc. R. Soc. A 295, 107–128 (1966).
[CrossRef]

J. W. C. Johns, D. A. Ramsay, S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc. 35, 90–104 (1963).
[CrossRef]

Jongma, R. T.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Kachanov, A.

V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

Kamphus, M.

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.

Kasper, T.

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

Kee, R. J.

R. J. Kee, F. M. Rupley, J. Miller, “CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics,” (1982).

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, (Sandia National Laboratories, 1985).

Koch, J. D.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
[CrossRef]

B. Atakan, A. Lamprecht, K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame 133, 431–440, (2003).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame 121, 610–624 (2000).
[CrossRef]

B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

B. Atakan, H. Böhm, K. Kohse-Höinghaus, “Fuel-rich chemistry and soot precursors,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 289–316.

M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.

C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” submitted to Prog. Energy. Combust. Sci.

Krasnoperov, L. N.

L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
[CrossRef]

Kychakoff, G.

Lamprecht, A.

B. Atakan, A. Lamprecht, K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame 133, 431–440, (2003).
[CrossRef]

Langford, A. O.

A. O. Langford, C. B. Moore, “Reaction and relaxation of vibrationally excited formyl radicals,” J. Chem. Phys. 80, 4204–4210 (1984).
[CrossRef]

Lightfoot, P. D.

J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
[CrossRef]

Linne, M.

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech. 171, 163–190 (2001).
[CrossRef]

Linne, M. A.

A. Brockhinke, M. A. Linne, “Short-pulse techniques: picosecond fluorescence, energy transfer, and quench-free measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002), Chap. 5, pp. 128–154.

Lozovsky, V. A.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

V. A. Lozovsky, I. Derzy, S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst. 27, 445–452 (1998).
[CrossRef]

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

Målmqvist, P. A.

L. Serrano-Andrés, N. Forsberg, P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys. 108, 7202–7216 (1998).
[CrossRef]

Mauss, F.

K. Hoyermann, F. Mauss, T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys. 6, 3824–3835 (2004).
[CrossRef]

McEnally, C. S.

C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” submitted to Prog. Energy. Combust. Sci.

McIlroy, A.

A. McIlroy, “Laser studies of small radicals in rich methane flames: OH, HCO, and 1CH2,” Isr. J. Chem. 39, 55–62 (1999).
[CrossRef]

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

A. McIlroy, J. B. Jeffries, “Cavity ringdown spectroscopy for concentration measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 98–127.

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Mercier, X.

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

Miller, J.

R. J. Kee, F. M. Rupley, J. Miller, “CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics,” (1982).

Miller, J. A.

J. A. Miller, M. J. Pilling, J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst. 30, 43–88 (2004).
[CrossRef]

C. J. Pope, J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst. 28, 1519–1527 (2000).
[CrossRef]

L. Prada, J. A. Miller, “Reburning using several hydrocarbon fuels: a kinetic modeling study,” Combust. Sci. Technol. 132, 225–250 (1998).
[CrossRef]

J. A. Miller, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst. 26, 461–480 (1996).
[CrossRef]

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, (Sandia National Laboratories, 1985).

Moore, C. B.

I. Garcia-Moreno, C. B. Moore, “Spectroscopy of methylene: Einstein coefficients for CH (b˜1B1–α˜1A1) transitions,” J. Chem. Phys. 99, 6429–6435 (1993).
[CrossRef]

H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
[CrossRef]

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

A. O. Langford, C. B. Moore, “Reaction and relaxation of vibrationally excited formyl radicals,” J. Chem. Phys. 80, 4204–4210 (1984).
[CrossRef]

Moreau, C.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Mueller, C. J.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Najm, H. N.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Nesbitt, D. J.

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Parker, D. H.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Paul, P. H.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Pauwels, J. F.

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Petek, H.

H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
[CrossRef]

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

Petersen, E. L.

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame 117, 272–290 (1999).
[CrossRef]

Pfefferle, L. D.

C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” submitted to Prog. Energy. Combust. Sci.

Pilling, M. J.

J. A. Miller, M. J. Pilling, J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst. 30, 43–88 (2004).
[CrossRef]

Pope, C. J.

C. J. Pope, J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst. 28, 1519–1527 (2000).
[CrossRef]

Prada, L.

L. Prada, J. A. Miller, “Reburning using several hydrocarbon fuels: a kinetic modeling study,” Combust. Sci. Technol. 132, 225–250 (1998).
[CrossRef]

Priddle, S. H.

J. W. C. Johns, D. A. Ramsay, S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc. 35, 90–104 (1963).
[CrossRef]

Rakestraw, D. J.

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

Ramsay, D. A.

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

J. M. Brown, D. A. Ramsay, “Axis switching in the Ã2A″–X˜2A′ transition of HCO: determination of molecular geometry,” Can. J. Phys. 53, 2232–2241 (1975).
[CrossRef]

J. W. C. Johns, D. A. Ramsay, S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc. 35, 90–104 (1963).
[CrossRef]

G. Herzberg, D. A. Ramsay, “The 7500 to 4500 Å absorption system of the free HCO radical,” Proc. R. Soc. A 233, 34–54 (1955).
[CrossRef]

Ravishankara, A. R.

L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
[CrossRef]

Richter, H.

H. Richter, W. J. Grieco, J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame 119, 1–22 (1999).
[CrossRef]

Rupley, F. M.

R. J. Kee, F. M. Rupley, J. Miller, “CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics,” (1982).

Sanders, S. T.

Sappey, A. D.

A. D. Sappey, D. R. Crosley, R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B 50, 463–472 (1990).
[CrossRef]

Scherer, J. J.

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

Schocker, A.

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
[CrossRef]

Schoemaecker-Moreau, C.

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

Schulz, C.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

Seitzman, J. M.

Serrano-Andrés, L.

L. Serrano-Andrés, N. Forsberg, P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys. 108, 7202–7216 (1998).
[CrossRef]

Shavitt, I.

D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
[CrossRef]

Smith, G. P.

E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
[CrossRef]

J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
[CrossRef]

Smooke, M. D.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, (Sandia National Laboratories, 1985).

Smyth, K. C.

K. C. Smyth, D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), Chap. 2, pp. 9–68.

Spuler, S. M.

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech. 171, 163–190 (2001).
[CrossRef]

Stark, H.

L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
[CrossRef]

Stoeckel, F.

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

ter Meulen, J. J.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

Therssen, E.

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

Troe, J.

J. A. Miller, M. J. Pilling, J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst. 30, 43–88 (2004).
[CrossRef]

Vaidya, W. M.

W. M. Vaidya, “Spectrum of the flame of ethylene,” Proc. R. Soc. A 147, 513–521 (1934).
[CrossRef]

Van Oijen, J. A.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

Vasudev, R.

R. Vasudev, R. N. Zare, “Laser optogalvanic study of HCO A state predissociation, J. Chem. Phys. 76, 5267–5270 (1982).
[CrossRef]

Walsh, R.

J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
[CrossRef]

Wang, H.

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

Wang, J.

Wodtke, A. M.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Wolfrum, J.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

Wyckoff, P. S.

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

Wysong, I. J.

J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
[CrossRef]

Yalin, A. P.

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

R. Vasudev, R. N. Zare, “Laser optogalvanic study of HCO A state predissociation, J. Chem. Phys. 76, 5267–5270 (1982).
[CrossRef]

Zeuch, T.

K. Hoyermann, F. Mauss, T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys. 6, 3824–3835 (2004).
[CrossRef]

Am. J. Phys. (1)

R. C. Hilborn, “Einstein coefficients, cross-sections, f values, dipole-moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

K.-H. Homann, Fullerenes and soot formation—new pathways to large particles in flames, Angew. Chem. Int. Ed. Engl. 37, 2434–2451 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (5)

A. D. Sappey, D. R. Crosley, R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B 50, 463–472 (1990).
[CrossRef]

A. Schocker, A. Brockhinke, K. Bultitude, P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B 77, 101–108 (2003).
[CrossRef]

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B 78, 485–492 (2004).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B 70, 435–445 (2000).
[CrossRef]

Can. J. Phys. (1)

J. M. Brown, D. A. Ramsay, “Axis switching in the Ã2A″–X˜2A′ transition of HCO: determination of molecular geometry,” Can. J. Phys. 53, 2232–2241 (1975).
[CrossRef]

Chem. Phys. Lett. (7)

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett. 277, 423–429 (1997).
[CrossRef]

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO”, Chem. Phys. Lett. 132, 225–230 (1986).
[CrossRef]

Comb. Sci. Tech. (1)

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech. 171, 163–190 (2001).
[CrossRef]

Combust. Flame (7)

H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998).
[CrossRef]

A. T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame 121, 610–624 (2000).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame 117, 272–290 (1999).
[CrossRef]

B. Atakan, A. Lamprecht, K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame 133, 431–440, (2003).
[CrossRef]

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame 135, 57–64 (2003).
[CrossRef]

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997).
[CrossRef]

H. Richter, W. J. Grieco, J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame 119, 1–22 (1999).
[CrossRef]

Combust. Sci. Technol. (1)

L. Prada, J. A. Miller, “Reburning using several hydrocarbon fuels: a kinetic modeling study,” Combust. Sci. Technol. 132, 225–250 (1998).
[CrossRef]

Discuss. Faraday Soc. (1)

J. W. C. Johns, D. A. Ramsay, S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc. 35, 90–104 (1963).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Isr. J. Chem. (1)

A. McIlroy, “Laser studies of small radicals in rich methane flames: OH, HCO, and 1CH2,” Isr. J. Chem. 39, 55–62 (1999).
[CrossRef]

J. Chem. Phys. (10)

S. Cheskis, “Intracavity laser-absorption spectroscopy detection of HCO radicals in atmospheric-pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
[CrossRef]

V. A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

I. Garcia-Moreno, C. B. Moore, “Spectroscopy of methylene: Einstein coefficients for CH (b˜1B1–α˜1A1) transitions,” J. Chem. Phys. 99, 6429–6435 (1993).
[CrossRef]

R. Vasudev, R. N. Zare, “Laser optogalvanic study of HCO A state predissociation, J. Chem. Phys. 76, 5267–5270 (1982).
[CrossRef]

A. O. Langford, C. B. Moore, “Reaction and relaxation of vibrationally excited formyl radicals,” J. Chem. Phys. 80, 4204–4210 (1984).
[CrossRef]

L. Serrano-Andrés, N. Forsberg, P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys. 108, 7202–7216 (1998).
[CrossRef]

H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys. 86, 1172–1188 (1987).
[CrossRef]

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys. 86, 1189–1205 (1987).
[CrossRef]

D. C. Comeau, I. Shavitt, P. Jensen, P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys. 90, 6491–6500 (1989).
[CrossRef]

J. Quant. Spec. Rad. Trans. (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spec. Rad. Trans. 2, 97–199 (1962).
[CrossRef]

Laser Phys. (1)

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

K. Hoyermann, F. Mauss, T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys. 6, 3824–3835 (2004).
[CrossRef]

Proc. Combust. Inst. (10)

J. A. Miller, M. J. Pilling, J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst. 30, 43–88 (2004).
[CrossRef]

C. J. Pope, J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst. 28, 1519–1527 (2000).
[CrossRef]

L. N. Krasnoperov, E. N. Chesnokov, H. Stark, A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst. 30, 935–943 (2004).
[CrossRef]

J. A. Miller, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst. 26, 461–480 (1996).
[CrossRef]

B. Atakan, A. T. Hartlieb, J. Brand, K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst. 27, 435–444 (1998).
[CrossRef]

V. A. Lozovsky, I. Derzy, S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst. 27, 445–452 (1998).
[CrossRef]

J. B. Jeffries, D. R. Crosley, I. J. Wysong, G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst. 23, 1847–1854 (1990).
[CrossRef]

E. W. G. Diau, G. P. Smith, J. B. Jeffries, D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst. 27, 453–460 (1998).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2735–2742 (2002).
[CrossRef]

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2004).
[CrossRef]

Proc. R. Soc. A (3)

W. M. Vaidya, “Spectrum of the flame of ethylene,” Proc. R. Soc. A 147, 513–521 (1934).
[CrossRef]

G. Herzberg, D. A. Ramsay, “The 7500 to 4500 Å absorption system of the free HCO radical,” Proc. R. Soc. A 233, 34–54 (1955).
[CrossRef]

G. Herzberg, J. W. C. Johns, “The spectrum and structure of singlet CH2,” Proc. R. Soc. A 295, 107–128 (1966).
[CrossRef]

Prog. Comp. Fluid Dyn. (1)

H. Böhm, M. Braun-Unkhoff, P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn. 3, 145–150 (2003).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Z. Phys. Chem. (1)

K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem. 219, 583–599 (2005).
[CrossRef]

Other (12)

B. Atakan, H. Böhm, K. Kohse-Höinghaus, “Fuel-rich chemistry and soot precursors,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 289–316.

C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” submitted to Prog. Energy. Combust. Sci.

K. C. Smyth, D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), Chap. 2, pp. 9–68.

A. Brockhinke, M. A. Linne, “Short-pulse techniques: picosecond fluorescence, energy transfer, and quench-free measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002), Chap. 5, pp. 128–154.

A. McIlroy, J. B. Jeffries, “Cavity ringdown spectroscopy for concentration measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 98–127.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy—an Ultratrace-Absorption Measurement Technique (Oxford U. Press, 1999).
[CrossRef]

E. Goos, M. Braun-Unkhoff, “DLR-mechanism,” DLR, Stuttgart (personal communication, 2004).

M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.

I. Glassman, Combustion2nd ed. (Academic, 1987).

R. J. Kee, F. M. Rupley, J. Miller, “CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics,” (1982).

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, (Sandia National Laboratories, 1985).

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissiansky, Z. Qin, GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/ (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup (top) and schematic representation of the low-pressure burner with the cavity (bottom).

Fig. 2
Fig. 2

Overview of an absorption spectrum measured in a propene flame (C/O = 0.63.

Fig. 3
Fig. 3

Absorption spectrum of the OH radical. S21 lines of A2∑(υ′ = 0) ← X2Π(υ′ = 0) system.

Fig. 4
Fig. 4

OH mole fraction versus height above the burner in fuel-rich propene flames with various stoichiometries.

Fig. 5
Fig. 5

Absorption spectrum of the ÃA″(0, 90, 0) ← X ˜ 2A′(0, 01, 0) system of the HCO radical.

Fig. 6
Fig. 6

HCO mole fraction versus height above the burner in fuel-rich propene flames with various stoichiometries.

Fig. 7
Fig. 7

Part of the absorption spectrum of the 1CH2 radical with lines of the b ˜1B1(0, 13, 0) ← ã1A1(0, 0, 0) system. Unassigned lines are most likely also singlet methylene transitions.

Fig. 8
Fig. 8

1CH2 mole fraction versus height above the burner in fuel-rich propene flames with various stoichiometries.

Fig. 9
Fig. 9

Comparison of experimental concentrations (symbols) and CHEMKIN-simulations (dashed curves) using the DLR mechanism for the investigated radicals in several fuel-rich propene flames, dots, C/O = 0.5; diamond, C/O = 0.6; triangle, ΔC/O = 0.77. (a) Temperature profiles used for the simulations (measured both by NO LIF and OH CRDS).

Tables (1)

Tables Icon

Table 1 Experimental Parameters for the Propene Flamesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ ( ν ) = d c [ ( 1 - R ) + L + α ( ν ) l ] .
C 1 H 2 + C 2 H 2 C 3 H 3 + H .
B i k = 1 h ν 0 0 σ i k ( ν - ν 0 ) d ν .

Metrics