Abstract

Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging–diverging nozzle into a reactor. When a trace of methane (<2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-α near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.
  2. M. Frenklach, “Monte-Carlo simulation of diamond growth by methyl and acetylene reactions,” J. Chem. Phys. 97, 5794–5802 (1992).
    [CrossRef]
  3. M. Frenklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
    [CrossRef]
  4. J. E. Butler, R. L. Woodin, “Thin film diamond growth mechanisms,” Philos. Trans. R. Soc. London Ser. A 342, 209–224 (1993).
    [CrossRef]
  5. S. J. Harris, D. G. Goodwin, “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem. 97, 23–28 (1993).
    [CrossRef]
  6. K. E. Spear, M. Frenklach, “High temperature chemistry of CVD (chemical vapor deposition) diamond growth,” Pure Appl. Chem. 66, 1773–1782 (1994).
    [CrossRef]
  7. D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
    [CrossRef]
  8. D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6906 (1993).
    [CrossRef]
  9. P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991).
    [CrossRef]
  10. D. G. Goodwin, J. E. Butler, “Theory of diamond chemical vapor deposition,” in Handbook of Industrial Diamond and Diamond Films, M. Prelas, G. Popovicii, K. K. Bigelow eds. (Marcel Dekker, 1998), pp. 527–581.
  11. N. Ohtake, M. Yoshikawa, “Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere,” J. Electrochem. Soc. 137, 717–722 (1990).
    [CrossRef]
  12. Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).
  13. M. H. Loh, M. A. Cappelli, “Supersonic dc-arc jet synthesis of diamond,” Diamond Relat. Mater. 2, 454–461 (1993).
    [CrossRef]
  14. G. P. Smith, J. B. Jeffries, “Gas phase chemistry in a diamond-depositing dc-arcjet,” Proc. Electrochem. Soc. 91–8, 194–201 (1991).
  15. M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
    [CrossRef]
  16. D. G. Goodwin, “Simulations of high-rate diamond synthesis: methyl as growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
    [CrossRef]
  17. S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
    [CrossRef]
  18. I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
    [CrossRef]
  19. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
    [CrossRef] [PubMed]
  20. P. V. Storm, M. A. Cappelli, “Arcjet nozzle flow-field characterization by laser-induced fluorescence,” Appl. Opt. 37, 486–495 (1998).
    [CrossRef]
  21. M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
    [CrossRef]
  22. K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
    [CrossRef]
  23. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–319 (1994).
    [CrossRef]
  24. K. C. Smyth, D. R. Crosley, “Detection of minor species with laser-techniques” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.
  25. D. G. Fletcher, “Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen,” Appl. Opt. 38, 1850–1858 (1999).
    [CrossRef]
  26. J. E. M. Goldsmith, Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Soc. 22, 1403–1411 (1989).
  27. J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
    [CrossRef]
  28. L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
    [CrossRef]
  29. J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
    [CrossRef]
  30. J. E. M. Goldsmith, M. Alden, U. Westblom, “Photochemical effects in multiple species fluorescence imaging in hydrogen-nitrous oxide flames,” Appl. Opt. 29, 4852–4859 (1990).
    [CrossRef] [PubMed]
  31. L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
    [CrossRef]
  32. K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
    [CrossRef]
  33. W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997).
    [CrossRef]
  34. E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997).
    [CrossRef]
  35. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
    [CrossRef]
  36. J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
    [CrossRef] [PubMed]
  37. J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
    [CrossRef]
  38. W. Juchmann, J. Luque, J. B. Jeffries, “Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence,” Appl. Opt. 39, 3704–3711 (2000).
    [CrossRef]
  39. J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
    [CrossRef]
  40. G. W. Faris, E. A. Brinkman, J. B. Jeffries, “Density measurements in a dc arcjet using scanned beam deflection tomography” Opt. Express 7, 447–460 (2000).
    [CrossRef] [PubMed]
  41. D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986).
    [CrossRef] [PubMed]
  42. U. Meier, K. Kohse-Höinghaus, L. Schafer, C. P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
    [CrossRef] [PubMed]
  43. A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
    [CrossRef]
  44. K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001).
    [CrossRef]
  45. B. Ganguly, P. W. Parish, “Absolute H atom density measurement in pure methane pulsed discharge,” Appl. Phys. Lett. 84, 4953–4955 (2004).
    [CrossRef]
  46. M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
    [CrossRef]
  47. H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000).
    [CrossRef]
  48. M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
    [CrossRef]
  49. H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
    [CrossRef]
  50. A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).
  51. J. E. M. Goldsmith, R. J. M. Anderson, L. R. Williams, “Time-resolved two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 15, 78–80 (1990).
    [CrossRef] [PubMed]
  52. S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
    [CrossRef]

2004 (1)

B. Ganguly, P. W. Parish, “Absolute H atom density measurement in pure methane pulsed discharge,” Appl. Phys. Lett. 84, 4953–4955 (2004).
[CrossRef]

2002 (1)

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

2001 (2)

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001).
[CrossRef]

2000 (4)

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence,” Appl. Opt. 39, 3704–3711 (2000).
[CrossRef]

G. W. Faris, E. A. Brinkman, J. B. Jeffries, “Density measurements in a dc arcjet using scanned beam deflection tomography” Opt. Express 7, 447–460 (2000).
[CrossRef] [PubMed]

H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000).
[CrossRef]

1999 (1)

1998 (5)

P. V. Storm, M. A. Cappelli, “Arcjet nozzle flow-field characterization by laser-induced fluorescence,” Appl. Opt. 37, 486–495 (1998).
[CrossRef]

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

1997 (6)

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997).
[CrossRef]

E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997).
[CrossRef]

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

1996 (2)

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

1995 (1)

S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

1994 (2)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–319 (1994).
[CrossRef]

K. E. Spear, M. Frenklach, “High temperature chemistry of CVD (chemical vapor deposition) diamond growth,” Pure Appl. Chem. 66, 1773–1782 (1994).
[CrossRef]

1993 (8)

D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
[CrossRef]

D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6906 (1993).
[CrossRef]

J. E. Butler, R. L. Woodin, “Thin film diamond growth mechanisms,” Philos. Trans. R. Soc. London Ser. A 342, 209–224 (1993).
[CrossRef]

S. J. Harris, D. G. Goodwin, “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem. 97, 23–28 (1993).
[CrossRef]

M. H. Loh, M. A. Cappelli, “Supersonic dc-arc jet synthesis of diamond,” Diamond Relat. Mater. 2, 454–461 (1993).
[CrossRef]

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

1992 (2)

A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
[CrossRef]

M. Frenklach, “Monte-Carlo simulation of diamond growth by methyl and acetylene reactions,” J. Chem. Phys. 97, 5794–5802 (1992).
[CrossRef]

1991 (6)

M. Frenklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991).
[CrossRef]

D. G. Goodwin, “Simulations of high-rate diamond synthesis: methyl as growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
[CrossRef]

G. P. Smith, J. B. Jeffries, “Gas phase chemistry in a diamond-depositing dc-arcjet,” Proc. Electrochem. Soc. 91–8, 194–201 (1991).

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

1990 (4)

1989 (1)

J. E. M. Goldsmith, Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Soc. 22, 1403–1411 (1989).

1988 (2)

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

1986 (1)

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986).
[CrossRef] [PubMed]

Agrup, S.

S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

Alden, M.

S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

J. E. M. Goldsmith, M. Alden, U. Westblom, “Photochemical effects in multiple species fluorescence imaging in hydrogen-nitrous oxide flames,” Appl. Opt. 29, 4852–4859 (1990).
[CrossRef] [PubMed]

Anderson, R. J. M.

Angus, J. C.

C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.

Bachmann, P. K.

P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991).
[CrossRef]

Bamford, D. J.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986).
[CrossRef] [PubMed]

Bertagnolli, K. E.

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

Bischel, W. K.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986).
[CrossRef] [PubMed]

Bittner, J.

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Boogaarts, M. G. H.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

Booth, J. P.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

Boyd, I. D.

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

Breton, Y.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

Brinkman, E. A.

G. W. Faris, E. A. Brinkman, J. B. Jeffries, “Density measurements in a dc arcjet using scanned beam deflection tomography” Opt. Express 7, 447–460 (2000).
[CrossRef] [PubMed]

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997).
[CrossRef]

Brinkman, G. J.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

Brinkmann, E. A.

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

Brown, M. S.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

Bui-Pham, M. N.

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

Butler, J. E.

J. E. Butler, R. L. Woodin, “Thin film diamond growth mechanisms,” Philos. Trans. R. Soc. London Ser. A 342, 209–224 (1993).
[CrossRef]

D. G. Goodwin, J. E. Butler, “Theory of diamond chemical vapor deposition,” in Handbook of Industrial Diamond and Diamond Films, M. Prelas, G. Popovicii, K. K. Bigelow eds. (Marcel Dekker, 1998), pp. 527–581.

Cappelli, M. A.

Chenevier, M.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

Coltrin, M. E.

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

Crofton, M. W.

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

Crosley, D. R.

K. C. Smyth, D. R. Crosley, “Detection of minor species with laser-techniques” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.

Czarnetzki, U.

H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000).
[CrossRef]

Dandy, D. S.

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

Desgroux, P.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Dobele, H. F.

H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000).
[CrossRef]

Döbele, H. F.

K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001).
[CrossRef]

Dunlop, J. R.

A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
[CrossRef]

Falconer, I. S.

M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
[CrossRef]

Faris, G. W.

Fletcher, D. G.

Frenklach, M.

K. E. Spear, M. Frenklach, “High temperature chemistry of CVD (chemical vapor deposition) diamond growth,” Pure Appl. Chem. 66, 1773–1782 (1994).
[CrossRef]

M. Frenklach, “Monte-Carlo simulation of diamond growth by methyl and acetylene reactions,” J. Chem. Phys. 97, 5794–5802 (1992).
[CrossRef]

M. Frenklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

Ganguly, B.

B. Ganguly, P. W. Parish, “Absolute H atom density measurement in pure methane pulsed discharge,” Appl. Phys. Lett. 84, 4953–4955 (2004).
[CrossRef]

Gasnot, L.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Gicquel, A.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

Girshick, S. L.

S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
[CrossRef]

Goehlich, A.

H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000).
[CrossRef]

Goldsmith, J. E. M.

Goodwin, D. G.

D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
[CrossRef]

D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6906 (1993).
[CrossRef]

S. J. Harris, D. G. Goodwin, “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem. 97, 23–28 (1993).
[CrossRef]

D. G. Goodwin, “Simulations of high-rate diamond synthesis: methyl as growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
[CrossRef]

D. G. Goodwin, J. E. Butler, “Theory of diamond chemical vapor deposition,” in Handbook of Industrial Diamond and Diamond Films, M. Prelas, G. Popovicii, K. K. Bigelow eds. (Marcel Dekker, 1998), pp. 527–581.

Gotoh, Y.

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

Greber, I.

C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.

Han, H.

S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
[CrossRef]

Hanson, R. K.

Harris, S. J.

S. J. Harris, D. G. Goodwin, “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem. 97, 23–28 (1993).
[CrossRef]

Hassouni, K.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

Heberlein, J.

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

James, B. W.

M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
[CrossRef]

Jeffries, J. B.

W. Juchmann, J. Luque, J. B. Jeffries, “Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence,” Appl. Opt. 39, 3704–3711 (2000).
[CrossRef]

G. W. Faris, E. A. Brinkman, J. B. Jeffries, “Density measurements in a dc arcjet using scanned beam deflection tomography” Opt. Express 7, 447–460 (2000).
[CrossRef] [PubMed]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997).
[CrossRef]

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

G. P. Smith, J. B. Jeffries, “Gas phase chemistry in a diamond-depositing dc-arcjet,” Proc. Electrochem. Soc. 91–8, 194–201 (1991).

Juchmann, W.

W. Juchmann, J. Luque, J. B. Jeffries, “Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence,” Appl. Opt. 39, 3704–3711 (2000).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

Jusinski, L. E.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986).
[CrossRef] [PubMed]

Just, T.

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Kajwara, T.

K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Kelm, S.

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

Khachan, J.

M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
[CrossRef]

Klages, C. P.

L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schafer, C. P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–319 (1994).
[CrossRef]

L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schafer, C. P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Kovach, C.

C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.

Leers, D.

P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991).
[CrossRef]

Li, C.

S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
[CrossRef]

Liebeskind, J. G.

Loh, M. H.

M. H. Loh, M. A. Cappelli, “Supersonic dc-arc jet synthesis of diamond,” Diamond Relat. Mater. 2, 454–461 (1993).
[CrossRef]

Lu, Z. P.

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

Lucht, R. P.

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

Luque, J.

W. Juchmann, J. Luque, J. B. Jeffries, “Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence,” Appl. Opt. 39, 3704–3711 (2000).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997).
[CrossRef] [PubMed]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997).
[CrossRef]

Lydtin, H.

P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991).
[CrossRef]

Marks, C.

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

Masuda, I.

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

Mazouffre, S.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

Meier, U.

L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schafer, C. P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Miller, T. A.

A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
[CrossRef]

Miyazaki, K.

K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Moore, T. A.

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

Muraoka, K.

K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Niemi, K.

K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001).
[CrossRef]

Ohtake, N.

N. Ohtake, M. Yoshikawa, “Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere,” J. Electrochem. Soc. 137, 717–722 (1990).
[CrossRef]

Ossler, F.

S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

Parish, P. W.

B. Ganguly, P. W. Parish, “Absolute H atom density measurement in pure methane pulsed discharge,” Appl. Phys. Lett. 84, 4953–4955 (2004).
[CrossRef]

Pauwels, J. F.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Petiau, M.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

Pfender, E.

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

Pobst, J. A.

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

Preppernau, B. L.

A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
[CrossRef]

Raiche, G. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

Roozbehani, B.

C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.

Schaefer, L.

L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

Schafer, L.

Schram, D. C.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

Schulz-von der Gathen, V.

K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001).
[CrossRef]

Smith, G. P.

G. P. Smith, J. B. Jeffries, “Gas phase chemistry in a diamond-depositing dc-arcjet,” Proc. Electrochem. Soc. 91–8, 194–201 (1991).

Smyth, K. C.

K. C. Smyth, D. R. Crosley, “Detection of minor species with laser-techniques” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.

Snail, K.

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

Sochet, L. R.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Spear, K. E.

K. E. Spear, M. Frenklach, “High temperature chemistry of CVD (chemical vapor deposition) diamond growth,” Pure Appl. Chem. 66, 1773–1782 (1994).
[CrossRef]

Stalder, K. R.

E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997).
[CrossRef]

Storm, P. V.

Tsrepi, A. D.

A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
[CrossRef]

Uchino, K.

K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

van der Heijden, H. W. P.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

van der Mullen, J. A. M.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

Vankan, P.

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

Wang, H.

M. Frenklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

Westblom, U.

Williams, L. R.

Woodin, R. L.

J. E. Butler, R. L. Woodin, “Thin film diamond growth mechanisms,” Philos. Trans. R. Soc. London Ser. A 342, 209–224 (1993).
[CrossRef]

Wouters, M. J.

M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
[CrossRef]

Wysong, I. J.

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

Yoshikawa, M.

N. Ohtake, M. Yoshikawa, “Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere,” J. Electrochem. Soc. 137, 717–722 (1990).
[CrossRef]

Yu, B. W.

S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
[CrossRef]

Zeatoun, L.

C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.

Appl. Opt. (7)

Appl. Phys. B (1)

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Appl. Phys. B. (3)

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998).
[CrossRef]

S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

B. Ganguly, P. W. Parish, “Absolute H atom density measurement in pure methane pulsed discharge,” Appl. Phys. Lett. 84, 4953–4955 (2004).
[CrossRef]

L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

D. G. Goodwin, “Simulations of high-rate diamond synthesis: methyl as growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
[CrossRef]

Chem. Phys. Lett. (1)

J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[CrossRef]

Combust. Flame (1)

J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988).
[CrossRef]

Diamond Relat. Mater. (2)

M. H. Loh, M. A. Cappelli, “Supersonic dc-arc jet synthesis of diamond,” Diamond Relat. Mater. 2, 454–461 (1993).
[CrossRef]

P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991).
[CrossRef]

J. Appl. Phy. (1)

W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997).
[CrossRef]

J. Appl. Phys. (7)

E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997).
[CrossRef]

J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997).
[CrossRef]

A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992).
[CrossRef]

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
[CrossRef]

D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6906 (1993).
[CrossRef]

J. Chem. Phys. (1)

M. Frenklach, “Monte-Carlo simulation of diamond growth by methyl and acetylene reactions,” J. Chem. Phys. 97, 5794–5802 (1992).
[CrossRef]

J. Electrochem. Soc. (1)

N. Ohtake, M. Yoshikawa, “Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere,” J. Electrochem. Soc. 137, 717–722 (1990).
[CrossRef]

J. Phys. Chem. (1)

S. J. Harris, D. G. Goodwin, “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem. 97, 23–28 (1993).
[CrossRef]

J. Phys. D (2)

K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001).
[CrossRef]

M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998).
[CrossRef]

J. Phys. III (1)

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).

J. Spacecr. Rockets (1)

M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001).
[CrossRef]

J. Vac. Sci. Technol. A (2)

J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998).
[CrossRef]

K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Philos. Trans. R. Soc. London Ser. A (1)

J. E. Butler, R. L. Woodin, “Thin film diamond growth mechanisms,” Philos. Trans. R. Soc. London Ser. A 342, 209–224 (1993).
[CrossRef]

Phys. Rev. A. (1)

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986).
[CrossRef] [PubMed]

Phys. Rev. B (1)

M. Frenklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

Phys. Rev. E (1)

H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000).
[CrossRef]

Plasma Chem. Plasma Process. (1)

S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993).
[CrossRef]

Plasma Sources Sci. Technol. (1)

H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000).
[CrossRef]

Proc. Combust. Soc. (1)

J. E. M. Goldsmith, Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Soc. 22, 1403–1411 (1989).

Proc. Electrochem. Soc. (2)

G. P. Smith, J. B. Jeffries, “Gas phase chemistry in a diamond-depositing dc-arcjet,” Proc. Electrochem. Soc. 91–8, 194–201 (1991).

Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–319 (1994).
[CrossRef]

Pure Appl. Chem. (1)

K. E. Spear, M. Frenklach, “High temperature chemistry of CVD (chemical vapor deposition) diamond growth,” Pure Appl. Chem. 66, 1773–1782 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002).
[CrossRef]

Other (3)

C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.

D. G. Goodwin, J. E. Butler, “Theory of diamond chemical vapor deposition,” in Handbook of Industrial Diamond and Diamond Films, M. Prelas, G. Popovicii, K. K. Bigelow eds. (Marcel Dekker, 1998), pp. 527–581.

K. C. Smyth, D. R. Crosley, “Detection of minor species with laser-techniques” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two-photon LIF of atomic hydrogen excited with 205 nm light produced by frequency tripling an Nd:YAG pumped dye laser. An arc in H2/Ar is expanded and CH4 added; LIF measurements performed in the expansion plume between nozzle and substrate.

Fig. 2
Fig. 2

LIF lifetime measurements versus reactor pressure for the free stream of the arcjet plume on the centerline and at the edge of the plume.

Fig. 3
Fig. 3

LIF signal in volts (squares) and atomic hydrogen concentration (triangles) from quenching corrected LIF.

Fig. 4
Fig. 4

Pressure (P) dependence of the atomic hydrogen radial profile in the freestream 20 mm from the nozzle.

Fig. 5
Fig. 5

LIF signal versus added methane near the nozzle (squares) in the freestream (triangles) and near the substrate (circles).

Fig. 6
Fig. 6

Variation in atomic hydrogen concentration with argon/hydrogen ratio in the feedstock.

Fig. 7
Fig. 7

Lower panel, temperature versus axial position on the centerline of the arcjet plume, from Ref. 37 for the standard diamond growth conditions of 43% hydrogen, 56% argon, 1% methane and a 25 Torr reactor pressure. Upper panel, atomic hydrogen versus axial position for the standard diamond growth conditions; note the rise in the quenching rate from the density change near the substrate surface.

Fig. 8
Fig. 8

Radial distribution of hydrogen atoms near the nozzle (filled circles), in the free stream (open circles), and near the substrate (filled squares).

Metrics