Abstract

A time-gated ballistic imaging instrument is used to obtain high-spatial-resolution, single-shot images of the liquid core in a water spray issuing into a gaseous crossflow. We describe further development of the diagnostic technique to improve spatial resolution and present images and statistics for various jets under crossflow experimental conditions (different Weber numbers). Series of these images reveal a near-nozzle flow field undergoing breakup and subsequent droplet formation by stripping. One can also detect signatures of spatially periodic behavior in the liquid core and formation of small voids during breakup.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Madabhushi, M. Y. Leong, D. J. Hautman, “Simulation of the breakup of a liquid jet in crossflow at atmospheric conditions,” 2004 Proceedings of ASME Turbo Expo, Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2004).
    [CrossRef]
  2. B. Zuo, D. L. Black, D. S. Crocker, “Fuel atomization and drop breakup models for advanced combustion CFD codes,” presented at 38th/AIAA/ASME/SAE/ASEE. Join Propulsion Conference & Exhibit, Indianapolis, Ind., 7–10 July 2002, AIAA paper 2002–4175.
  3. R. D. Reitz, “Modeling atomization processes in high-pressure vaporizing sprays,” Atomization Spray Technol. 3, 309–337 (1987).
  4. A. Cavaliere, R. Ragucci, C. Noviello, “Bending and break-up of a liquid jet in a high pressure airflow,” Exp. Therm. Fluid Sci. 27, 449–454 (2003).
    [CrossRef]
  5. J. Becker, C. Hassa, “Breakup and atomization of a kerosene jet in crossflow at elevated pressure,” Atomization Sprays 12, 49–67 (2002).
    [CrossRef]
  6. M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
    [CrossRef]
  7. M. Paciaroni, M. Linne, “Single-shot two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
    [CrossRef] [PubMed]
  8. L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  9. A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

2004 (1)

2003 (1)

A. Cavaliere, R. Ragucci, C. Noviello, “Bending and break-up of a liquid jet in a high pressure airflow,” Exp. Therm. Fluid Sci. 27, 449–454 (2003).
[CrossRef]

2002 (2)

J. Becker, C. Hassa, “Breakup and atomization of a kerosene jet in crossflow at elevated pressure,” Atomization Sprays 12, 49–67 (2002).
[CrossRef]

M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
[CrossRef]

1991 (1)

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1987 (1)

R. D. Reitz, “Modeling atomization processes in high-pressure vaporizing sprays,” Atomization Spray Technol. 3, 309–337 (1987).

Alfano, R. R.

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Becker, J.

M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
[CrossRef]

J. Becker, C. Hassa, “Breakup and atomization of a kerosene jet in crossflow at elevated pressure,” Atomization Sprays 12, 49–67 (2002).
[CrossRef]

Black, D. L.

B. Zuo, D. L. Black, D. S. Crocker, “Fuel atomization and drop breakup models for advanced combustion CFD codes,” presented at 38th/AIAA/ASME/SAE/ASEE. Join Propulsion Conference & Exhibit, Indianapolis, Ind., 7–10 July 2002, AIAA paper 2002–4175.

Cavaliere, A.

A. Cavaliere, R. Ragucci, C. Noviello, “Bending and break-up of a liquid jet in a high pressure airflow,” Exp. Therm. Fluid Sci. 27, 449–454 (2003).
[CrossRef]

Crocker, D. S.

B. Zuo, D. L. Black, D. S. Crocker, “Fuel atomization and drop breakup models for advanced combustion CFD codes,” presented at 38th/AIAA/ASME/SAE/ASEE. Join Propulsion Conference & Exhibit, Indianapolis, Ind., 7–10 July 2002, AIAA paper 2002–4175.

Doerr, T.

M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
[CrossRef]

Hassa, C.

M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
[CrossRef]

J. Becker, C. Hassa, “Breakup and atomization of a kerosene jet in crossflow at elevated pressure,” Atomization Sprays 12, 49–67 (2002).
[CrossRef]

Hautman, D. J.

R. K. Madabhushi, M. Y. Leong, D. J. Hautman, “Simulation of the breakup of a liquid jet in crossflow at atmospheric conditions,” 2004 Proceedings of ASME Turbo Expo, Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2004).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lefebvre, A. H.

A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

Leong, M. Y.

R. K. Madabhushi, M. Y. Leong, D. J. Hautman, “Simulation of the breakup of a liquid jet in crossflow at atmospheric conditions,” 2004 Proceedings of ASME Turbo Expo, Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2004).
[CrossRef]

Linne, M.

Liu, F.

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Madabhushi, R. K.

R. K. Madabhushi, M. Y. Leong, D. J. Hautman, “Simulation of the breakup of a liquid jet in crossflow at atmospheric conditions,” 2004 Proceedings of ASME Turbo Expo, Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2004).
[CrossRef]

Noviello, C.

A. Cavaliere, R. Ragucci, C. Noviello, “Bending and break-up of a liquid jet in a high pressure airflow,” Exp. Therm. Fluid Sci. 27, 449–454 (2003).
[CrossRef]

Paciaroni, M.

Rachner, M.

M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
[CrossRef]

Ragucci, R.

A. Cavaliere, R. Ragucci, C. Noviello, “Bending and break-up of a liquid jet in a high pressure airflow,” Exp. Therm. Fluid Sci. 27, 449–454 (2003).
[CrossRef]

Reitz, R. D.

R. D. Reitz, “Modeling atomization processes in high-pressure vaporizing sprays,” Atomization Spray Technol. 3, 309–337 (1987).

Wang, L.

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zhang, X. C.

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zuo, B.

B. Zuo, D. L. Black, D. S. Crocker, “Fuel atomization and drop breakup models for advanced combustion CFD codes,” presented at 38th/AIAA/ASME/SAE/ASEE. Join Propulsion Conference & Exhibit, Indianapolis, Ind., 7–10 July 2002, AIAA paper 2002–4175.

Aerosp. Sci. Technol. (1)

M. Rachner, J. Becker, C. Hassa, T. Doerr, “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerosp. Sci. Technol. 6, 495–506 (2002).
[CrossRef]

Appl. Opt. (1)

Atomization Spray Technol. (1)

R. D. Reitz, “Modeling atomization processes in high-pressure vaporizing sprays,” Atomization Spray Technol. 3, 309–337 (1987).

Atomization Sprays (1)

J. Becker, C. Hassa, “Breakup and atomization of a kerosene jet in crossflow at elevated pressure,” Atomization Sprays 12, 49–67 (2002).
[CrossRef]

Exp. Therm. Fluid Sci. (1)

A. Cavaliere, R. Ragucci, C. Noviello, “Bending and break-up of a liquid jet in a high pressure airflow,” Exp. Therm. Fluid Sci. 27, 449–454 (2003).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, F. Liu, X. C. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other (3)

A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

R. K. Madabhushi, M. Y. Leong, D. J. Hautman, “Simulation of the breakup of a liquid jet in crossflow at atmospheric conditions,” 2004 Proceedings of ASME Turbo Expo, Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2004).
[CrossRef]

B. Zuo, D. L. Black, D. S. Crocker, “Fuel atomization and drop breakup models for advanced combustion CFD codes,” presented at 38th/AIAA/ASME/SAE/ASEE. Join Propulsion Conference & Exhibit, Indianapolis, Ind., 7–10 July 2002, AIAA paper 2002–4175.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a liquid jet in crossflow of gas.

Fig. 2
Fig. 2

Schematic of ballistic, snake, and diffuse photons.

Fig. 3
Fig. 3

Schematic of the ballistic imaging system used in this work.

Fig. 4
Fig. 4

Spectral schematic of the two-band ballistic imaging approach used in this work.

Fig. 5
Fig. 5

Schematic of the jet in crossflow apparatus.

Fig. 6
Fig. 6

Example image for case 2.

Fig. 7
Fig. 7

Shot-to-shot variation for case 2.

Fig. 8
Fig. 8

a, Example spray for case 1; b, case 2; c, case 3; d, evidence for bag breakup in case 3; e, exapmle spray for case 4; f, case 5.

Fig. 9
Fig. 9

Drop size distributions for cases 1 and 2.

Fig. 10
Fig. 10

Drop size distributions for cases 3, 4, and 5.

Tables (2)

Tables Icon

Table 1 Jet Run Conditions

Tables Icon

Table 2 Results Extracted from Images

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W e g = ρ g u g 2 d / σ l

Metrics