Abstract

The previously demonstrated nonintrusive time-of-flight molecular velocity tagging method, hydroxyl tagging velocimetry (HTV), has shown the capability of operating both at room temperature and in flames. Well-characterized jets of either air (nonreacting cases) or hydrogen–air diffusion flames (reacting cases) are employed. A 7 × 7 OH line grid is generated first through the single-photon photodissociation of H2O by a ~193 nm pulsed narrowband ArF excimer laser and is subsequently revealed by a read laser sheet through fluorescence caused by A2+(v′ = 3) ← X2Πi(v″ = 0), A2+(v′ = 1) ← X2Πi(v″ = 0), or A2+(v′ = 0) ← X2Πi(v″ = 0) pumping at ~248, ~282, or ~308 nm, respectively. A detailed discussion of the spectroscopy and relative signal intensity of these various read techniques is presented, and the implications for optimal HTV performance are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
    [CrossRef]
  2. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
    [CrossRef]
  3. L. A. Ribarov, “Nonintrusive molecular velocity measurements in air and reacting flows using hydroxyl tagging velocimetry,” Ph.D. dissertation (Vanderbilt University, 2002).
  4. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 1933nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
    [CrossRef]
  5. R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
    [CrossRef]
  6. V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
    [CrossRef]
  7. G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
    [CrossRef]
  8. L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
    [CrossRef]
  9. R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
    [CrossRef]
  10. Q.-V. Nguyen, P. H. Paul, “KrF laser-induced photobleaching effects in O2 planar laser-induced fluorescence signals: experiment and model,” Appl. Opt. 36, 2675–2683 (1997).
    [CrossRef] [PubMed]
  11. J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2∑+(v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
    [CrossRef]
  12. T. Nielsen, F. Bormann, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
    [CrossRef]
  13. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).
  14. J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustions,” Ph.D. dissertation (Stanford University, 1991).
  15. J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
    [CrossRef]
  16. F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
    [CrossRef]
  17. T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
    [CrossRef]
  18. D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH,” J. Quant. Spectros. Radiat. Transfer. 15, 579–591 (1975).
    [CrossRef]
  19. J. Luque, D. R. Crosley, “Transition probabilities in the A2∑+–X2Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
    [CrossRef]
  20. K. R. German, “Radiative and predissociative lifetimes of the v′ = 0, 1, and 2 levels of the A2∑+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
    [CrossRef]
  21. K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
    [CrossRef]
  22. T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
    [CrossRef]
  23. C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
    [CrossRef]
  24. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
    [CrossRef]
  25. R. van Harrevelt, M. C. van Hemert, “Photodissociation of water in the à band revisited with new potential energy surfaces,” J. Chem. Phys. 114, 9453–9462 (2001).
    [CrossRef]
  26. G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
    [CrossRef]
  27. O. L. Polyanski, P. Jensen, J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys. 105, 6490–6497 (1996).
    [CrossRef]
  28. P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
    [CrossRef]
  29. D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
    [CrossRef]
  30. A. M. Bass, H. P. Broida, “A spectroscopic atlas of the 2∑+–2Π transition of OH,” Natl. Bur. Stand. (U.S.), Circ. 541, 1–21 (1953).
  31. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH (fundamental data),” J. Quant. Spectros. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  32. J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Vers. 1.6),” SRI International Report MP 99-009, (1999) http://www/sri.com/cem/lifbase .
  33. DaVis 6.0 Stereo PIV/PTV Software (LaVision, GmbH), (1999) http://www.LaVision.com .
  34. D. A. V. Kliner, R. L. Farrow, “Measurements of ground-state OH rotational energy-transfer rates,” J. Chem. Phys. 110, 412–422 (1999).
    [CrossRef]
  35. B. Atakan, J. Heinze, U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1, 0) transition,” Appl. Phys. B 64, 585–591 (1997).
    [CrossRef]

2004 (1)

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

2002 (1)

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
[CrossRef]

2001 (1)

R. van Harrevelt, M. C. van Hemert, “Photodissociation of water in the à band revisited with new potential energy surfaces,” J. Chem. Phys. 114, 9453–9462 (2001).
[CrossRef]

2000 (1)

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

1999 (3)

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 1933nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

D. A. V. Kliner, R. L. Farrow, “Measurements of ground-state OH rotational energy-transfer rates,” J. Chem. Phys. 110, 412–422 (1999).
[CrossRef]

1998 (1)

J. Luque, D. R. Crosley, “Transition probabilities in the A2∑+–X2Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

1997 (4)

K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
[CrossRef]

T. Nielsen, F. Bormann, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
[CrossRef]

Q.-V. Nguyen, P. H. Paul, “KrF laser-induced photobleaching effects in O2 planar laser-induced fluorescence signals: experiment and model,” Appl. Opt. 36, 2675–2683 (1997).
[CrossRef] [PubMed]

B. Atakan, J. Heinze, U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1, 0) transition,” Appl. Phys. B 64, 585–591 (1997).
[CrossRef]

1996 (3)

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

O. L. Polyanski, P. Jensen, J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys. 105, 6490–6497 (1996).
[CrossRef]

F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

1994 (2)

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

1993 (3)

G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
[CrossRef]

1991 (1)

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2∑+(v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

1989 (1)

D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
[CrossRef]

1987 (1)

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

1984 (2)

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
[CrossRef]

1978 (1)

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

1975 (2)

K. R. German, “Radiative and predissociative lifetimes of the v′ = 0, 1, and 2 levels of the A2∑+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH,” J. Quant. Spectros. Radiat. Transfer. 15, 579–591 (1975).
[CrossRef]

1962 (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH (fundamental data),” J. Quant. Spectros. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

1953 (1)

A. M. Bass, H. P. Broida, “A spectroscopic atlas of the 2∑+–2Π transition of OH,” Natl. Bur. Stand. (U.S.), Circ. 541, 1–21 (1953).

Andresen, P.

T. Nielsen, F. Bormann, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
[CrossRef]

Atakan, B.

B. Atakan, J. Heinze, U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1, 0) transition,” Appl. Phys. B 64, 585–591 (1997).
[CrossRef]

Bass, A. M.

A. M. Bass, H. P. Broida, “A spectroscopic atlas of the 2∑+–2Π transition of OH,” Natl. Bur. Stand. (U.S.), Circ. 541, 1–21 (1953).

Bath, A.

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

Batliwala, F.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

Beärda, R. A.

G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
[CrossRef]

Bormann, F.

T. Nielsen, F. Bormann, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Broida, H. P.

A. M. Bass, H. P. Broida, “A spectroscopic atlas of the 2∑+–2Π transition of OH,” Natl. Bur. Stand. (U.S.), Circ. 541, 1–21 (1953).

Burrows, M.

T. Nielsen, F. Bormann, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Chang, A. Y.

D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
[CrossRef]

Cheng, T. S.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

Crosley, D. R.

J. Luque, D. R. Crosley, “Transition probabilities in the A2∑+–X2Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH,” J. Quant. Spectros. Radiat. Transfer. 15, 579–591 (1975).
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH (fundamental data),” J. Quant. Spectros. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Davidson, D. F.

D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
[CrossRef]

DeBarber, P. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

Deusch, S.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH (fundamental data),” J. Quant. Spectros. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Dimotakis, P. E.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).

Engel, V.

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

Farrow, R. L.

D. A. V. Kliner, R. L. Farrow, “Measurements of ground-state OH rotational energy-transfer rates,” J. Chem. Phys. 110, 412–422 (1999).
[CrossRef]

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2∑+(v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

Gendrich, C. P.

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

German, K. R.

K. R. German, “Radiative and predissociative lifetimes of the v′ = 0, 1, and 2 levels of the A2∑+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
[CrossRef]

Gray, J. A.

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2∑+(v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

Hanson, R. K.

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
[CrossRef]

Heinze, J.

B. Atakan, J. Heinze, U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1, 0) transition,” Appl. Phys. B 64, 585–591 (1997).
[CrossRef]

Hollo, S. D.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

Hu, S.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

Jarrett, O.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

Jeffries, J. B.

K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
[CrossRef]

Jensen, P.

O. L. Polyanski, P. Jensen, J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys. 105, 6490–6497 (1996).
[CrossRef]

Kliner, D. A. V.

D. A. V. Kliner, R. L. Farrow, “Measurements of ground-state OH rotational energy-transfer rates,” J. Chem. Phys. 110, 412–422 (1999).
[CrossRef]

Kohse-Höinghaus, K.

D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
[CrossRef]

Koochesfahani, M. M.

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

Krauss, R. H.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
[CrossRef]

Kroes, G.-J.

G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
[CrossRef]

Laufer, G.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
[CrossRef]

Lemon, C. J.

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

Lengel, R. K.

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH,” J. Quant. Spectros. Radiat. Transfer. 15, 579–591 (1975).
[CrossRef]

Luque, J.

J. Luque, D. R. Crosley, “Transition probabilities in the A2∑+–X2Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
[CrossRef]

Massey, G. A.

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

McDaniel, J. C.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
[CrossRef]

Meier, U. E.

B. Atakan, J. Heinze, U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1, 0) transition,” Appl. Phys. B 64, 585–591 (1997).
[CrossRef]

Meijer, G.

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

Nguyen, Q.-V.

Nielsen, T.

T. Nielsen, F. Bormann, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Northam, G. B.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

Oguss, D. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 1933nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Ondrey, G. S.

P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
[CrossRef]

Paul, P. H.

Pitz, R. W.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 1933nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

Polyanski, O. L.

O. L. Polyanski, P. Jensen, J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys. 105, 6490–6497 (1996).
[CrossRef]

Quagliaroli, T. M.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
[CrossRef]

Ribarov, L. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 1933nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

L. A. Ribarov, “Nonintrusive molecular velocity measurements in air and reacting flows using hydroxyl tagging velocimetry,” Ph.D. dissertation (Vanderbilt University, 2002).

Rothe, E. W.

P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
[CrossRef]

Schinke, R.

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

Seitzman, J. M.

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustions,” Ph.D. dissertation (Stanford University, 1991).

Steffens, K. L.

K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
[CrossRef]

Tennyson, J.

O. L. Polyanski, P. Jensen, J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys. 105, 6490–6497 (1996).
[CrossRef]

Titze, B.

P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
[CrossRef]

van Dishoeck, E. F.

G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
[CrossRef]

van Harrevelt, R.

R. van Harrevelt, M. C. van Hemert, “Photodissociation of water in the à band revisited with new potential energy surfaces,” J. Chem. Phys. 114, 9453–9462 (2001).
[CrossRef]

van Hemert, M. C.

R. van Harrevelt, M. C. van Hemert, “Photodissociation of water in the à band revisited with new potential energy surfaces,” J. Chem. Phys. 114, 9453–9462 (2001).
[CrossRef]

G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
[CrossRef]

Wehrmeyer, J. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, R. W. Pitz, “Flame flow tagging velocimetry with 1933nm H2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

Whitehurst, R. B.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

Yetter, R. A.

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
[CrossRef]

AIAA J. (3)

L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J. 37, 708–714 (1999).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B 74, 175–183 (2002).
[CrossRef]

F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OH A2∑+(v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

B. Atakan, J. Heinze, U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1, 0) transition,” Appl. Phys. B 64, 585–591 (1997).
[CrossRef]

Combust. Flame (1)

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finiterate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[CrossRef]

Exp. Fluids (2)

C. P. Gendrich, M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids 22, 67–77 (1996).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

J. Chem. Phys. (11)

V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C˜ → Ã emission of water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2∑+(v′ = 3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

J. Luque, D. R. Crosley, “Transition probabilities in the A2∑+–X2Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

K. R. German, “Radiative and predissociative lifetimes of the v′ = 0, 1, and 2 levels of the A2∑+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
[CrossRef]

K. L. Steffens, J. Luque, J. B. Jeffries, D. R. Crosley, “Transition probabilities in OH A2∑+–X2Πi: bands with v′ = 2 and 3,” J. Chem. Phys. 106, 6262–6267 (1997).
[CrossRef]

R. van Harrevelt, M. C. van Hemert, “Photodissociation of water in the à band revisited with new potential energy surfaces,” J. Chem. Phys. 114, 9453–9462 (2001).
[CrossRef]

G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys. 99, 228–236 (1993).
[CrossRef]

O. L. Polyanski, P. Jensen, J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys. 105, 6490–6497 (1996).
[CrossRef]

P. Andresen, G. S. Ondrey, B. Titze, E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys. 80, 2548–2569 (1984).
[CrossRef]

D. A. V. Kliner, R. L. Farrow, “Measurements of ground-state OH rotational energy-transfer rates,” J. Chem. Phys. 110, 412–422 (1999).
[CrossRef]

J. Prop. Power (1)

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power 10, 377–381 (1994).
[CrossRef]

J. Quant. Spectros. Radiat. Transfer (2)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH (fundamental data),” J. Quant. Spectros. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer 42, 267–278 (1989).
[CrossRef]

J. Quant. Spectros. Radiat. Transfer. (1)

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH,” J. Quant. Spectros. Radiat. Transfer. 15, 579–591 (1975).
[CrossRef]

Meas. Sci. Technol. (1)

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Natl. Bur. Stand. (U.S.), Circ. (1)

A. M. Bass, H. P. Broida, “A spectroscopic atlas of the 2∑+–2Π transition of OH,” Natl. Bur. Stand. (U.S.), Circ. 541, 1–21 (1953).

Other (5)

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Vers. 1.6),” SRI International Report MP 99-009, (1999) http://www/sri.com/cem/lifbase .

DaVis 6.0 Stereo PIV/PTV Software (LaVision, GmbH), (1999) http://www.LaVision.com .

L. A. Ribarov, “Nonintrusive molecular velocity measurements in air and reacting flows using hydroxyl tagging velocimetry,” Ph.D. dissertation (Vanderbilt University, 2002).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).

J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustions,” Ph.D. dissertation (Stanford University, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of important energy transfer processes in LIF of OH pumped at ~282 nm.

Fig. 2
Fig. 2

Concentrations of OH formed for various room air temperatures as a function of RH based on 1% photodissociation of H2O by the laser pulse.

Fig. 3
Fig. 3

H2O equilibrium vibrational level population fractions versus temperature for the first four vibrationally excited levels. Excited cross sections are larger than the ground-state absorption cross section (8 × 10−22 cm2) by factors indicated in square brackets.

Fig. 4
Fig. 4

Room temperature (300 K) HTV LIF excitation spectra showing the strong Q1(1) transition of the A2+(v′ = 1) ← X2Πi(v″ = 0) OH band. Curves are normalized to the Q1(1) line, showing (a) simulation by LIFBASE (assumed, 1 cm−1 linewidth, Gaussian line shape), (b) experimental spectrum.

Fig. 5
Fig. 5

Schematics (not to scale, but with proper dimensions) of the experimental HTV measurements in a small (convergent) air jet nozzle.

Fig. 6
Fig. 6

Single-pulse instantaneous HTV images (pumping the A2+(v′ = 0) ← X2Πi(v″ = 0) OH transition at ~308 nm) of a 7 × 7 optical grid of H2O photodissociation taken in a near-sonic high-speed air jet. Write–read delays, (a) 0 μs, (b) 2 μs. Dimensions, 41 mm length, 27 mm height in both images.

Fig. 7
Fig. 7

Single-pulse HTV fluorescence images (pumping the A2+(v′ = 1) ← X2Πi(v″ = 0) OH transition at ~282 nm) of a 5 × 5 optical grid from H2O photodissociation taken in a near-sonic high-speed air jet. Write–read delays, (a) 0 μs, (b) 1 μs.

Fig. 8
Fig. 8

Lean (ϕ = 0.43) H2–air flame temperature (~1500 K) HTV LIF excitation spectra of the A2+(v′ = 1) ← X2Πi(v″ = 0) OH band. Curves are normalized to the Q1(5) line strength, showing (a) simulation by LIFBASE (assumed 1 cm−1 linewidth, Gaussian line shape), and (b) experimental spectrum. Primes denote satellite branches.

Fig. 9
Fig. 9

Temperature effects on the strength of R-branch transitions in the (1 ← 0) OH band (also shown are the P and Q branches).

Fig. 10
Fig. 10

Schematics (not to scale, but with proper dimensions) of the experimental HTV measurements in a Hencken multielement (square nozzle) burner.

Fig. 11
Fig. 11

Single-pulse instantaneous HTV (pumping the A2+(v′ = 0) ← X2Πi(v″ = 0) OH transition at ~308 nm) images of the 7 × 7 optical grid taken in a lean (ϕ = 0.39, T = 1300 K) H2–air flame issuing vertically in both images. Write–read delays, (a) 0 μs, (b) 10 μs.

Fig. 12
Fig. 12

Single-pulse instantaneous HTV [pumping the A2+(v′ = 1) ← X2Πi(v″ = 0) OH transition at ~282 nm] images of the 7 × 7 optical grid taken in a lean (ϕ = 0.43, 1500 K)H2–air flame issuing vertically in both images. Write–read delays, (a) 0 μs, (b) 40 μs.

Tables (3)

Tables Icon

Table 1 Comparison of Relative OH Fluorescence Signals for Various Pump Lasers (nOH = 3 × 1015 cm−3)

Tables Icon

Table 2 Minimum OH Concentration Needed to Exceed Detection Threshold of SNR > 4 or Np > 300

Tables Icon

Table 3 OH Formation in a Flame: Population Fractions, Number Densities, and Cross Sections for H2O (T = 2000 K, 25% H2O, 1 atm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N p = η Ω 4 π f 1 ( T ) χ n V B 12 E ν ( A 21 A 21 + Q 21 + P ) ,
N p C = f 1 ( T ) B 21 E ν ( A 21 A 21 + Q 21 + P ) ,
C = η ( Ω 4 π ) n OH V ,
n OH i n i = n d i n i = σ i E 0 h ν A ,

Metrics