Abstract

A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).
  2. A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987).
    [CrossRef] [PubMed]
  3. D. F. Davidson, A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Continuous wave laser absorption techniques for gas dynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
    [CrossRef] [PubMed]
  4. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurement of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3021 (1991).
    [CrossRef] [PubMed]
  5. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated flows,” Appl. Opt. 32, 6090–6102 (1993).
    [CrossRef] [PubMed]
  6. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
    [CrossRef]
  7. H. Okabe, The Photochemistry of Small Molecules (Wiley, 1978).
  8. M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
    [CrossRef]
  9. J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
    [CrossRef]
  10. D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
    [CrossRef]
  11. M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of oxygen and carbon dioxide from vibrationally excited states at high temperatures,” Chem. Phys. Lett. 176, 519–525 (1991).
    [CrossRef]
  12. R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997).
    [CrossRef]
  13. M. Ogawa, “Absorption cross sections of oxygen and carbon dioxide continua in the Schumann and far UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
    [CrossRef]
  14. B. R. Lewis, J. H. Carver, “Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 angstroms,” J. Quant. Spectrosc. Radiat. Transfer 30, 297–309 (1983).
    [CrossRef]
  15. E. L. Petersen, R. K. Hanson, “Nonideal effects behind reflected shock waves in a high-pressure shock tube,” Shock Waves 10, 405–420 (2001).
    [CrossRef]
  16. W. G. Bessler, C. Schulz, V. Sick, J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), paper p105; http://www.lifsim.com .
  17. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, “GRI-Mech 3.0” (2003), http://www.me.berkeley.edu/gri_mech/ .
  18. E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999).
    [CrossRef]
  19. D. F. Davidson, R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem Kinet. 36, 510–523 (2004).
    [CrossRef]

2005 (2)

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

2004 (2)

M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
[CrossRef]

D. F. Davidson, R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem Kinet. 36, 510–523 (2004).
[CrossRef]

2002 (1)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

2001 (1)

E. L. Petersen, R. K. Hanson, “Nonideal effects behind reflected shock waves in a high-pressure shock tube,” Shock Waves 10, 405–420 (2001).
[CrossRef]

1999 (1)

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999).
[CrossRef]

1997 (1)

R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997).
[CrossRef]

1993 (1)

1991 (3)

1987 (1)

1983 (1)

B. R. Lewis, J. H. Carver, “Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 angstroms,” J. Quant. Spectrosc. Radiat. Transfer 30, 297–309 (1983).
[CrossRef]

1971 (1)

M. Ogawa, “Absorption cross sections of oxygen and carbon dioxide continua in the Schumann and far UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
[CrossRef]

Barbour, E. A.

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

Bessler, W. G.

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

Carver, J. H.

B. R. Lewis, J. H. Carver, “Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 angstroms,” J. Quant. Spectrosc. Radiat. Transfer 30, 297–309 (1983).
[CrossRef]

Chang, A. Y.

Davidson, D. F.

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

D. F. Davidson, R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem Kinet. 36, 510–523 (2004).
[CrossRef]

M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999).
[CrossRef]

D. F. Davidson, A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Continuous wave laser absorption techniques for gas dynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurement of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3021 (1991).
[CrossRef] [PubMed]

DiRosa, M. D.

Gaydon, A. G.

A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).

Guettler, R. D.

R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997).
[CrossRef]

Hanson, R. K.

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
[CrossRef]

D. F. Davidson, R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem Kinet. 36, 510–523 (2004).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

E. L. Petersen, R. K. Hanson, “Nonideal effects behind reflected shock waves in a high-pressure shock tube,” Shock Waves 10, 405–420 (2001).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999).
[CrossRef]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated flows,” Appl. Opt. 32, 6090–6102 (1993).
[CrossRef] [PubMed]

D. F. Davidson, A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Continuous wave laser absorption techniques for gas dynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurement of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3021 (1991).
[CrossRef] [PubMed]

A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987).
[CrossRef] [PubMed]

Hurle, I. R.

A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).

Jeffries, J. B.

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Jensen, R. J.

R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997).
[CrossRef]

Koch, J. D.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Koshi, M.

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of oxygen and carbon dioxide from vibrationally excited states at high temperatures,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Lee, T.

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

Lewis, B. R.

B. R. Lewis, J. H. Carver, “Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 angstroms,” J. Quant. Spectrosc. Radiat. Transfer 30, 297–309 (1983).
[CrossRef]

Lyman, J. L.

R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997).
[CrossRef]

Matsui, H.

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of oxygen and carbon dioxide from vibrationally excited states at high temperatures,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Mattison, D. W.

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

Morris, C. I.

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

Oehlschlaeger, M. A.

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
[CrossRef]

Ogawa, M.

M. Ogawa, “Absorption cross sections of oxygen and carbon dioxide continua in the Schumann and far UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
[CrossRef]

Okabe, H.

H. Okabe, The Photochemistry of Small Molecules (Wiley, 1978).

Owens, Z. C.

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

Petersen, E. L.

E. L. Petersen, R. K. Hanson, “Nonideal effects behind reflected shock waves in a high-pressure shock tube,” Shock Waves 10, 405–420 (2001).
[CrossRef]

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999).
[CrossRef]

Philippe, L. C.

Rea, E. C.

Schulz, C.

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Yoshimura, M.

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of oxygen and carbon dioxide from vibrationally excited states at high temperatures,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Appl. Opt. (4)

Chem. Phys. Lett. (4)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004).
[CrossRef]

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of oxygen and carbon dioxide from vibrationally excited states at high temperatures,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997).
[CrossRef]

Int. J. Chem Kinet. (1)

D. F. Davidson, R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem Kinet. 36, 510–523 (2004).
[CrossRef]

J. Chem. Phys. (1)

M. Ogawa, “Absorption cross sections of oxygen and carbon dioxide continua in the Schumann and far UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
[CrossRef]

J. Power Prop. (1)

E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. R. Lewis, J. H. Carver, “Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 angstroms,” J. Quant. Spectrosc. Radiat. Transfer 30, 297–309 (1983).
[CrossRef]

Proc. Combust. Inst. (2)

J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005).
[CrossRef]

D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005).
[CrossRef]

Shock Waves (1)

E. L. Petersen, R. K. Hanson, “Nonideal effects behind reflected shock waves in a high-pressure shock tube,” Shock Waves 10, 405–420 (2001).
[CrossRef]

Other (4)

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), paper p105; http://www.lifsim.com .

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, “GRI-Mech 3.0” (2003), http://www.me.berkeley.edu/gri_mech/ .

H. Okabe, The Photochemistry of Small Molecules (Wiley, 1978).

A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Measured CO2 absorption cross section at 244 and 266 nm.8

Fig. 2
Fig. 2

Ratio of 266 to 244 nm absorption cross section; also referred to as absorbance ratio, R.

Fig. 3
Fig. 3

Uncertainty in measured temperature for given temperature and product of partial CO2 pressure and path length (PCO2L). The contours represent lines of constant uncertainty in the temperature measurement, assuming an uncertainty in measured absorbance of ±0.1% (−ln(I/I0) = ±0.001).

Fig. 4
Fig. 4

Schematic of experimental setup: L, lens; BBO, β-barium borate frequency-doubling crystal; PB, Pellin–Broca prism; M, mirror; BS, beam splitter; D, detector; PT, piezoelectric pressure transducer; and Kistler, shielded Kistler piezoelectric pressure transducer.

Fig. 5
Fig. 5

Example of a nonreacting experiment: measured absorbance at 266 and 244 nm and measured pressure. Initial reflected shock conditions are from ideal shock relations: 10% CO2/Ar, 2138 K, and 0.121 MPa.

Fig. 6
Fig. 6

Measured temperature (dark curve) versus isentropic temperature (light curve) for the experiment in Fig. 5. The measured temperature is determined from the absorbance ratio (absorbance traces given in Fig. 5); the isentropic temperature is determined from the pressure measurement (given in Fig. 5).

Fig. 7
Fig. 7

Comparison of measured temperature with isentropic temperature from the results given in Fig. 6.

Fig. 8
Fig. 8

Comparison of measured postshock temperature to temperature calculated with the ideal shock relations. Postshock vibrational equilibrium was assumed.

Fig. 9
Fig. 9

Molecular oxygen absorption cross section at 244.061 and 266.075 nm (0.1 MPa).

Fig. 10
Fig. 10

Molecular oxygen absorption spectrum around 244 nm for 2000 K and 0.1 MPa, calculated by using the LIFSIM calculator.16 The current doubled Ar+ line is at 244.061 nm; a source at 243.99 nm would reduce the interference due to O2 by a factor of seven.

Fig. 11
Fig. 11

Example absorbance for energetic ignition experiment. Initial reflected shock conditions, 1% CH4, 2% O2, 10% CO2, Ar, 2085 K, and 0.128 MPa. 266 and 244 nm measured absorbance, dark curves; corrected (O2 interference) 244 nm absorbance, light curve.

Fig. 12
Fig. 12

Measured temperature (thick curves) versus constant-volume calculation (thin curves). Top graph (initial reflected shock conditions), 1% CH4, 2% O2, 10% CO2, Ar, 2085 K and 0.128 MPa. Middle graph, 2% CH4, 4% O2, 10% CO2, Ar, 1890 K and 0.134 MPa. Bottom graph, 4% CH4, 8% O2, 10% CO2, Ar, 1851 K and 0.126 MPa. Postshock vibrational equilibrium was assumed. Error bars represent a 1 σ confidence interval.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

absorbance = ln ( I / I 0 ) = - σ n L ,
ln σ ( λ , T ) = a + b λ ,
absorbance ( λ 1 ) absorbance ( λ 2 ) = σ ( λ 1 , T ) n CO 2 L σ ( λ 2 , T ) n CO 2 L = σ ( λ 1 , T ) σ ( λ 2 , T ) = R ( T ) ,
T = ( 2.857 × 10 4 ) R 4 - ( 3.043 × 10 4 ) R 3 + ( 1.478 × 10 4 ) R 2 + ( 9.57 × 10 2 ) R + 1041 ( K ) ,
T = T 0 ( P / P 0 ) ( γ - 1 ) / γ .

Metrics