Abstract

Two-line OH planar laser-induced fluorescence (PLIF) thermometry was applied to a swirling CH4/air flame in a gas turbine (GT) model combustor at atmospheric pressure, which exhibited self-excited combustion instability. The potential and limitations of the method are discussed with respect to applications in GT-like flames. A major drawback of using OH as a temperature indicator is that no temperature information can be obtained from regions where OH radicals are missing or present in insufficient concentration. The resulting bias in the average temperature is addressed and quantified for one operating condition by a comparison with results from laser Raman measurements applied in the same flame. Care was taken to minimize saturation effects by decreasing the spectral laser power density to a minimum while keeping an acceptable spatial resolution and signal-to-noise ratio. In order to correct for the influence of laser light attenuation, absorption measurements were performed on a single-shot basis and a correction procedure was applied. The accuracy was determined to 4%–7% depending on the location within the flame and on the temperature level. A GT model combustor with an optical combustion chamber is described, and phase-locked 2D temperature distributions from a pulsating flame are presented. The temperature variations during an oscillation cycle are specified, and the general flame behavior is described. Our main goals are the evaluation of the OH PLIF thermometry and the characterization of a pulsating GT-like flame.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1998).
  2. K. Kohse-Höinghaus, J. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  3. D. Stepowski, “Laser measurements of scalars in turbulent diffusion flames,” Prog. Energy Combust. Sci. 18, 463–491 (1992).
    [CrossRef]
  4. W. Stricker, W. Meier, “The use of CARS for temperature measurements in practical flames,” Trends Appl. Spectrosc. 1, 231–260 (1993).
  5. F.-Q. Zhao, H. Hiroyasu, “The application of laser Rayleigh scattering to combustion diagnostics,” Prog. Energy Combust. Sci. 19, 447–485 (1993).
    [CrossRef]
  6. D. A. Greenhalgh, “Inelastic scattering laser diagnostics; CARS, planar LIF and planar LII,” in Optical Diagnostics for Flow Processes, L. Lading, P. Buchave, G. Wigley, eds. (Plenum, 1994).
    [CrossRef]
  7. A. R. Masri, R. W. Dibble, R. S. Barlow, “The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements,” Prog. Energy Combust. Sci. 22, 307–362 (1996).
    [CrossRef]
  8. E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
    [CrossRef] [PubMed]
  9. J. W. Daily, “Laser induced fluorescence spectroscopy in flames,” Prog. Energy Combust Sci. 23, 133–190 (1997).
    [CrossRef]
  10. J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 28, 1–41 (1998).
    [CrossRef]
  11. E. P. Hassel, S. Linow, “Laser diagnostics for studies of turbulent combustion,” Meas. Sci. Technol. 11, R37–R57 (2000).
    [CrossRef]
  12. G. S. Elliot, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
    [CrossRef]
  13. W. Stricker, “Measurement of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. Jeffries, eds. (Taylor & Francis, 2002), pp. 155–193.
  14. P. O. Hedman, D. L. Warren, “Turbulent velocity and temperature measurements from a gas-fueled technology combustor with a practical injector,” Combust. Flame 100, 185–192 (1995).
    [CrossRef]
  15. P. O. Hedman, D. V. Flores, T. H. Fletcher, “Observations of flame behavior in a laboratory-scale premixed natural gas/air gas turbine combustor from CARS temperature measurements,” in Proceedings of ASME Turbo Expo 2002 (ASME, 2002), paper GT-2002-30054.
  16. W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
    [CrossRef]
  17. S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
    [CrossRef]
  18. X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
    [CrossRef]
  19. X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
    [CrossRef]
  20. C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.
  21. Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
    [CrossRef]
  22. S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical combustor,” Appl. Opt. 34, 2780–2786 (1995).
    [CrossRef] [PubMed]
  23. F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).
  24. D. Most, A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
    [CrossRef]
  25. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
    [CrossRef] [PubMed]
  26. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
    [CrossRef] [PubMed]
  27. W. G. Bessler, F. Hildebrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40, 748–756 (2001).
    [CrossRef]
  28. J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
    [CrossRef]
  29. C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.
  30. D. Schelb, M. Braun-Unkhoff, P. Frank, “NO-promoted methane ignition at temperatures above 920K,” in 5th International Conference on Technologies and Combustion for Clean Environment (EU-DG XVII “Thermie”, 1999), pp. 145–151.
  31. U. Rahmann, A. Bütler, U. Lenhard, R. Düsing, D. Markus, A. Brockhinke, K. Kohse-Höinghaus, “LASKIN—a simulation program for time-resolved LIF-spectra,” International Report, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I, http://pc1.unibielefeld.de/laskin V. 5.0.
  32. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer on OH laser-induced fluorescence,” Appl. Phys. B 62, 583 (1996).
    [CrossRef]
  33. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  34. A. Cessou, U. Meier, D. Stepowski, “Application of planar laser induced fluorescence in turbulent reacting flows,” Meas. Sci. Technol. 11, 887–901 (2000).
    [CrossRef]
  35. U. E. Meier, D. Wolff-Gaßmann, W. Stricker, “LIF imaging and 2D temperature mapping in a model combustor at elevated pressure,” Aerosp. Sci. Technol. 4, 403–414 (2000).
    [CrossRef]
  36. R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
    [CrossRef]
  37. R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2∑+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
    [CrossRef]
  38. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
    [CrossRef] [PubMed]
  39. J. Tobai, T. Dreier, J. W. Daily, “Rotational level dependence of ground state recovery rates for OH X2Π (v″ = 0) in atmospheric pressure flame using the picosecond saturating-pump degenerate four-wave mixing probe technique,” J. Chem. Phys. 116, 4030–4038 (2002).
    [CrossRef]
  40. P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).
  41. J. W. Daily, E. W. Rothe, “Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence,” Appl. Phys. B 68, 131–140 (1999).
    [CrossRef]
  42. V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
    [CrossRef]
  43. O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
    [CrossRef]
  44. J.-Y. Chen, Mechanical Engineering Department, University of California, Berkeley, Calif. 94720 (personal communication).
  45. J. A. Miller, R. J. Kee, M. D. Smooke, J. F. Grcar, “The computation of the structure and extinction limit of a methane-air stagnation point diffusion flame,” presented at the Western States Section of the Combustion Institute, Spring Meeting1984, paper WSS/CI 84-10.

2005 (1)

X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
[CrossRef]

2004 (2)

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

2003 (2)

W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
[CrossRef]

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

2002 (3)

J. Tobai, T. Dreier, J. W. Daily, “Rotational level dependence of ground state recovery rates for OH X2Π (v″ = 0) in atmospheric pressure flame using the picosecond saturating-pump degenerate four-wave mixing probe technique,” J. Chem. Phys. 116, 4030–4038 (2002).
[CrossRef]

O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[CrossRef]

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

2001 (4)

G. S. Elliot, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

W. G. Bessler, F. Hildebrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40, 748–756 (2001).
[CrossRef]

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

D. Most, A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
[CrossRef]

2000 (3)

A. Cessou, U. Meier, D. Stepowski, “Application of planar laser induced fluorescence in turbulent reacting flows,” Meas. Sci. Technol. 11, 887–901 (2000).
[CrossRef]

U. E. Meier, D. Wolff-Gaßmann, W. Stricker, “LIF imaging and 2D temperature mapping in a model combustor at elevated pressure,” Aerosp. Sci. Technol. 4, 403–414 (2000).
[CrossRef]

E. P. Hassel, S. Linow, “Laser diagnostics for studies of turbulent combustion,” Meas. Sci. Technol. 11, R37–R57 (2000).
[CrossRef]

1999 (1)

J. W. Daily, E. W. Rothe, “Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence,” Appl. Phys. B 68, 131–140 (1999).
[CrossRef]

1998 (3)

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 28, 1–41 (1998).
[CrossRef]

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

1997 (2)

E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
[CrossRef] [PubMed]

J. W. Daily, “Laser induced fluorescence spectroscopy in flames,” Prog. Energy Combust Sci. 23, 133–190 (1997).
[CrossRef]

1996 (2)

A. R. Masri, R. W. Dibble, R. S. Barlow, “The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements,” Prog. Energy Combust. Sci. 22, 307–362 (1996).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer on OH laser-induced fluorescence,” Appl. Phys. B 62, 583 (1996).
[CrossRef]

1995 (2)

S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical combustor,” Appl. Opt. 34, 2780–2786 (1995).
[CrossRef] [PubMed]

P. O. Hedman, D. L. Warren, “Turbulent velocity and temperature measurements from a gas-fueled technology combustor with a practical injector,” Combust. Flame 100, 185–192 (1995).
[CrossRef]

1994 (1)

1993 (4)

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2∑+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
[CrossRef] [PubMed]

W. Stricker, W. Meier, “The use of CARS for temperature measurements in practical flames,” Trends Appl. Spectrosc. 1, 231–260 (1993).

F.-Q. Zhao, H. Hiroyasu, “The application of laser Rayleigh scattering to combustion diagnostics,” Prog. Energy Combust. Sci. 19, 447–485 (1993).
[CrossRef]

1992 (1)

D. Stepowski, “Laser measurements of scalars in turbulent diffusion flames,” Prog. Energy Combust. Sci. 18, 463–491 (1992).
[CrossRef]

1981 (1)

1962 (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Aigner, M.

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[CrossRef]

P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).

Aldag, H. R.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

Aldén, M.

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Allen, M. G.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

Anderson, R. C.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Andresen, P.

Barlow, R. S.

A. R. Masri, R. W. Dibble, R. S. Barlow, “The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements,” Prog. Energy Combust. Sci. 22, 307–362 (1996).
[CrossRef]

Belovich, V. M.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Bergmann, V.

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

Bessler, W. G.

Braun-Unkhoff, M.

D. Schelb, M. Braun-Unkhoff, P. Frank, “NO-promoted methane ignition at temperatures above 920K,” in 5th International Conference on Technologies and Combustion for Clean Environment (EU-DG XVII “Thermie”, 1999), pp. 145–151.

Carter, C. D.

G. S. Elliot, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Cattolica, R.

Cessou, A.

A. Cessou, U. Meier, D. Stepowski, “Application of planar laser induced fluorescence in turbulent reacting flows,” Meas. Sci. Technol. 11, 887–901 (2000).
[CrossRef]

Chen, J.-Y.

J.-Y. Chen, Mechanical Engineering Department, University of California, Berkeley, Calif. 94720 (personal communication).

Corporan, E.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Daily, J. W.

J. Tobai, T. Dreier, J. W. Daily, “Rotational level dependence of ground state recovery rates for OH X2Π (v″ = 0) in atmospheric pressure flame using the picosecond saturating-pump degenerate four-wave mixing probe technique,” J. Chem. Phys. 116, 4030–4038 (2002).
[CrossRef]

J. W. Daily, E. W. Rothe, “Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence,” Appl. Phys. B 68, 131–140 (1999).
[CrossRef]

J. W. Daily, “Laser induced fluorescence spectroscopy in flames,” Prog. Energy Combust Sci. 23, 133–190 (1997).
[CrossRef]

DeBarber, P. A.

Dibble, R. W.

A. R. Masri, R. W. Dibble, R. S. Barlow, “The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements,” Prog. Energy Combust. Sci. 22, 307–362 (1996).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Dinkelacker, F.

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Döbbeling, K.

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Dreier, T.

J. Tobai, T. Dreier, J. W. Daily, “Rotational level dependence of ground state recovery rates for OH X2Π (v″ = 0) in atmospheric pressure flame using the picosecond saturating-pump degenerate four-wave mixing probe technique,” J. Chem. Phys. 116, 4030–4038 (2002).
[CrossRef]

Duan, X.

P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).

Duan, X. R.

X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
[CrossRef]

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1998).

Elliot, G. S.

G. S. Elliot, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Engström, J.

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Fletcher, T. H.

P. O. Hedman, D. V. Flores, T. H. Fletcher, “Observations of flame behavior in a laboratory-scale premixed natural gas/air gas turbine combustor from CARS temperature measurements,” in Proceedings of ASME Turbo Expo 2002 (ASME, 2002), paper GT-2002-30054.

Flores, D. V.

P. O. Hedman, D. V. Flores, T. H. Fletcher, “Observations of flame behavior in a laboratory-scale premixed natural gas/air gas turbine combustor from CARS temperature measurements,” in Proceedings of ASME Turbo Expo 2002 (ASME, 2002), paper GT-2002-30054.

Frank, P.

D. Schelb, M. Braun-Unkhoff, P. Frank, “NO-promoted methane ignition at temperatures above 920K,” in 5th International Conference on Technologies and Combustion for Clean Environment (EU-DG XVII “Thermie”, 1999), pp. 145–151.

Giezendanner, R.

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

Gittins, C. M.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

Glumac, N.

G. S. Elliot, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Gord, J. R.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Grcar, J. F.

J. A. Miller, R. J. Kee, M. D. Smooke, J. F. Grcar, “The computation of the structure and extinction limit of a methane-air stagnation point diffusion flame,” presented at the Western States Section of the Combustion Institute, Spring Meeting1984, paper WSS/CI 84-10.

Greenhalgh, D. A.

D. A. Greenhalgh, “Inelastic scattering laser diagnostics; CARS, planar LIF and planar LII,” in Optical Diagnostics for Flow Processes, L. Lading, P. Buchave, G. Wigley, eds. (Plenum, 1994).
[CrossRef]

Gu, Y.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Hanson, R. K.

Hassel, E. P.

E. P. Hassel, S. Linow, “Laser diagnostics for studies of turbulent combustion,” Meas. Sci. Technol. 11, R37–R57 (2000).
[CrossRef]

Hedman, P. O.

P. O. Hedman, D. L. Warren, “Turbulent velocity and temperature measurements from a gas-fueled technology combustor with a practical injector,” Combust. Flame 100, 185–192 (1995).
[CrossRef]

P. O. Hedman, D. V. Flores, T. H. Fletcher, “Observations of flame behavior in a laboratory-scale premixed natural gas/air gas turbine combustor from CARS temperature measurements,” in Proceedings of ASME Turbo Expo 2002 (ASME, 2002), paper GT-2002-30054.

Hess, C. F.

Hicks, Y. R.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Hildebrand, F.

Hiroyasu, H.

F.-Q. Zhao, H. Hiroyasu, “The application of laser Rayleigh scattering to combustion diagnostics,” Prog. Energy Combust. Sci. 19, 447–485 (1993).
[CrossRef]

Hofmann, D.

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Jeffries, J.

K. Kohse-Höinghaus, J. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Johansson, P.

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Jörg, A.

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2∑+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

Kaminski, C.F.

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

Kaminsky, C.F.

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Kampmann, S.

Keck, O.

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[CrossRef]

Kee, R. J.

J. A. Miller, R. J. Kee, M. D. Smooke, J. F. Grcar, “The computation of the structure and extinction limit of a methane-air stagnation point diffusion flame,” presented at the Western States Section of the Combustion Institute, Spring Meeting1984, paper WSS/CI 84-10.

Kienle, R.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer on OH laser-induced fluorescence,” Appl. Phys. B 62, 583 (1996).
[CrossRef]

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2∑+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

Kohse-Höinghaus, K.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer on OH laser-induced fluorescence,” Appl. Phys. B 62, 583 (1996).
[CrossRef]

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2∑+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

K. Kohse-Höinghaus, J. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Lee, M. P.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer on OH laser-induced fluorescence,” Appl. Phys. B 62, 583 (1996).
[CrossRef]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
[CrossRef] [PubMed]

Lehmann, B.

X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
[CrossRef]

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

Leipertz, A.

Linow, S.

E. P. Hassel, S. Linow, “Laser diagnostics for studies of turbulent combustion,” Meas. Sci. Technol. 11, R37–R57 (2000).
[CrossRef]

Locke, R. J.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Löfström, C.

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Lucht, R. P.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Lückerath, R.

W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
[CrossRef]

Masri, A. R.

A. R. Masri, R. W. Dibble, R. S. Barlow, “The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements,” Prog. Energy Combust. Sci. 22, 307–362 (1996).
[CrossRef]

McMillin, B. K.

Meier, U.

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
[CrossRef]

A. Cessou, U. Meier, D. Stepowski, “Application of planar laser induced fluorescence in turbulent reacting flows,” Meas. Sci. Technol. 11, 887–901 (2000).
[CrossRef]

Meier, U. E.

U. E. Meier, D. Wolff-Gaßmann, W. Stricker, “LIF imaging and 2D temperature mapping in a model combustor at elevated pressure,” Aerosp. Sci. Technol. 4, 403–414 (2000).
[CrossRef]

Meier, W.

X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
[CrossRef]

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
[CrossRef]

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[CrossRef]

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

W. Stricker, W. Meier, “The use of CARS for temperature measurements in practical flames,” Trends Appl. Spectrosc. 1, 231–260 (1993).

P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).

Meyer, T. R.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Miller, J. A.

J. A. Miller, R. J. Kee, M. D. Smooke, J. F. Grcar, “The computation of the structure and extinction limit of a methane-air stagnation point diffusion flame,” presented at the Western States Section of the Combustion Institute, Spring Meeting1984, paper WSS/CI 84-10.

Miller, M. F.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

Most, D.

D. Most, A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
[CrossRef]

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Nguyen, Q.-V.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Nygren, J.

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Nyholm, K.

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Pacheco, D. P.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

Polifke, W.

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Reck, G. P.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Richter, M.

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

Rothe, E. W.

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

J. W. Daily, E. W. Rothe, “Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence,” Appl. Phys. B 68, 131–140 (1999).
[CrossRef]

E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
[CrossRef] [PubMed]

Roy, S.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Schelb, D.

D. Schelb, M. Braun-Unkhoff, P. Frank, “NO-promoted methane ignition at temperatures above 920K,” in 5th International Conference on Technologies and Combustion for Clean Environment (EU-DG XVII “Thermie”, 1999), pp. 145–151.

Schulz, C.

Seeger, T.

Seitzman, J. M.

Shenoy, S. U.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

Smooke, M. D.

J. A. Miller, R. J. Kee, M. D. Smooke, J. F. Grcar, “The computation of the structure and extinction limit of a methane-air stagnation point diffusion flame,” presented at the Western States Section of the Combustion Institute, Spring Meeting1984, paper WSS/CI 84-10.

Soika, A.

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Stepowski, D.

A. Cessou, U. Meier, D. Stepowski, “Application of planar laser induced fluorescence in turbulent reacting flows,” Meas. Sci. Technol. 11, 887–901 (2000).
[CrossRef]

D. Stepowski, “Laser measurements of scalars in turbulent diffusion flames,” Prog. Energy Combust. Sci. 18, 463–491 (1992).
[CrossRef]

Stricker, W.

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
[CrossRef]

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[CrossRef]

U. E. Meier, D. Wolff-Gaßmann, W. Stricker, “LIF imaging and 2D temperature mapping in a model combustor at elevated pressure,” Aerosp. Sci. Technol. 4, 403–414 (2000).
[CrossRef]

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

W. Stricker, W. Meier, “The use of CARS for temperature measurements in practical flames,” Trends Appl. Spectrosc. 1, 231–260 (1993).

W. Stricker, “Measurement of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. Jeffries, eds. (Taylor & Francis, 2002), pp. 155–193.

P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).

Tobai, J.

J. Tobai, T. Dreier, J. W. Daily, “Rotational level dependence of ground state recovery rates for OH X2Π (v″ = 0) in atmospheric pressure flame using the picosecond saturating-pump degenerate four-wave mixing probe technique,” J. Chem. Phys. 116, 4030–4038 (2002).
[CrossRef]

Walewski, J.

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

Warren, D. L.

P. O. Hedman, D. L. Warren, “Turbulent velocity and temperature measurements from a gas-fueled technology combustor with a practical injector,” Combust. Flame 100, 185–192 (1995).
[CrossRef]

Weigand, P.

X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
[CrossRef]

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).

Wolff, D.

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

Wolff-Gaßmann, D.

U. E. Meier, D. Wolff-Gaßmann, W. Stricker, “LIF imaging and 2D temperature mapping in a model combustor at elevated pressure,” Aerosp. Sci. Technol. 4, 403–414 (2000).
[CrossRef]

Wolfrum, J.

J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 28, 1–41 (1998).
[CrossRef]

Zhao, F.-Q.

F.-Q. Zhao, H. Hiroyasu, “The application of laser Rayleigh scattering to combustion diagnostics,” Prog. Energy Combust. Sci. 19, 447–485 (1993).
[CrossRef]

Aerosp. Sci. Technol. (1)

U. E. Meier, D. Wolff-Gaßmann, W. Stricker, “LIF imaging and 2D temperature mapping in a model combustor at elevated pressure,” Aerosp. Sci. Technol. 4, 403–414 (2000).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (5)

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer on OH laser-induced fluorescence,” Appl. Phys. B 62, 583 (1996).
[CrossRef]

X. R. Duan, W. Meier, P. Weigand, B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B 80, 389–396 (2005).
[CrossRef]

J. W. Daily, E. W. Rothe, “Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence,” Appl. Phys. B 68, 131–140 (1999).
[CrossRef]

V. Bergmann, W. Meier, D. Wolff, W. Stricker, “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame,” Appl. Phys. B 66, 489–502 (1998).
[CrossRef]

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2∑+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

Combust. Flame (2)

P. O. Hedman, D. L. Warren, “Turbulent velocity and temperature measurements from a gas-fueled technology combustor with a practical injector,” Combust. Flame 100, 185–192 (1995).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Combust. Sci. Tech. (1)

R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence,” Combust. Sci. Tech. 175, 721–741 (2003).
[CrossRef]

Combust. Sci. Technol (1)

Y. Gu, E. W. Rothe, G. P. Reck, R. J. Locke, R. C. Anderson, Y. R. Hicks, Q.-V. Nguyen, “One-dimensional UV Raman imaging of a jet-A-fueled aircraft combustor in a high temperature and pressure test cell: a feasibility study,” Combust. Sci. Technol 174, 199–215 (2002).
[CrossRef]

Combust. Sci. Technol. (1)

O. Keck, W. Meier, W. Stricker, M. Aigner, “Establishment of a confined swirling natural gas/air flame as a standard flame: Temperature and species distributions from laser Raman measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[CrossRef]

J. Chem. Phys. (1)

J. Tobai, T. Dreier, J. W. Daily, “Rotational level dependence of ground state recovery rates for OH X2Π (v″ = 0) in atmospheric pressure flame using the picosecond saturating-pump degenerate four-wave mixing probe technique,” J. Chem. Phys. 116, 4030–4038 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

J. Raman Spectrosc. (1)

W. Stricker, R. Lückerath, U. Meier, W. Meier, “Temperature measurements in combustion - not only with CARS: a look back at one aspect of the European CARS Workshop,” J. Raman Spectrosc. 34, 922–931 (2003).
[CrossRef]

Meas. Sci. Technol. (4)

A. Cessou, U. Meier, D. Stepowski, “Application of planar laser induced fluorescence in turbulent reacting flows,” Meas. Sci. Technol. 11, 887–901 (2000).
[CrossRef]

J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294–1303 (2001).
[CrossRef]

E. P. Hassel, S. Linow, “Laser diagnostics for studies of turbulent combustion,” Meas. Sci. Technol. 11, R37–R57 (2000).
[CrossRef]

G. S. Elliot, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Proc. Combust. Inst. (1)

J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 28, 1–41 (1998).
[CrossRef]

Prog. Combust. Inst. (1)

F. Dinkelacker, A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Döbbeling, “Structure of locally quenched highly turbulent lean premixed flames,” Prog. Combust. Inst. 27, 857–865 (1998).

Prog. Comput. Fluid Dynamics (1)

X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, B. Lehmann, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dynamics 4, 175–182 (2004).
[CrossRef]

Prog. Energy Combust Sci. (1)

J. W. Daily, “Laser induced fluorescence spectroscopy in flames,” Prog. Energy Combust Sci. 23, 133–190 (1997).
[CrossRef]

Prog. Energy Combust. Sci. (3)

F.-Q. Zhao, H. Hiroyasu, “The application of laser Rayleigh scattering to combustion diagnostics,” Prog. Energy Combust. Sci. 19, 447–485 (1993).
[CrossRef]

D. Stepowski, “Laser measurements of scalars in turbulent diffusion flames,” Prog. Energy Combust. Sci. 18, 463–491 (1992).
[CrossRef]

A. R. Masri, R. W. Dibble, R. S. Barlow, “The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements,” Prog. Energy Combust. Sci. 22, 307–362 (1996).
[CrossRef]

Trends Appl. Spectrosc. (1)

W. Stricker, W. Meier, “The use of CARS for temperature measurements in practical flames,” Trends Appl. Spectrosc. 1, 231–260 (1993).

Other (12)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1998).

K. Kohse-Höinghaus, J. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

D. A. Greenhalgh, “Inelastic scattering laser diagnostics; CARS, planar LIF and planar LII,” in Optical Diagnostics for Flow Processes, L. Lading, P. Buchave, G. Wigley, eds. (Plenum, 1994).
[CrossRef]

W. Stricker, “Measurement of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. Jeffries, eds. (Taylor & Francis, 2002), pp. 155–193.

P. O. Hedman, D. V. Flores, T. H. Fletcher, “Observations of flame behavior in a laboratory-scale premixed natural gas/air gas turbine combustor from CARS temperature measurements,” in Proceedings of ASME Turbo Expo 2002 (ASME, 2002), paper GT-2002-30054.

C. M. Gittins, S. U. Shenoy, H. R. Aldag, D. P. Pacheco, M. F. Miller, M. G. Allen, “Measurements of major species in a high pressure gas turbine combustor simulator using Raman scattering,” presented at 38th AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 2000.

C. Löfström, J. Engström, M. Richter, C.F. Kaminsky, P. Johansson, K. Nyholm, J. Nygren, M. Aldén, “Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor,” in Proceeding of ASME Turbo 2000 Land, Sea, Air (ASME, 2002) paper 2000-GT-0124.

D. Schelb, M. Braun-Unkhoff, P. Frank, “NO-promoted methane ignition at temperatures above 920K,” in 5th International Conference on Technologies and Combustion for Clean Environment (EU-DG XVII “Thermie”, 1999), pp. 145–151.

U. Rahmann, A. Bütler, U. Lenhard, R. Düsing, D. Markus, A. Brockhinke, K. Kohse-Höinghaus, “LASKIN—a simulation program for time-resolved LIF-spectra,” International Report, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I, http://pc1.unibielefeld.de/laskin V. 5.0.

P. Weigand, W. Meier, X. Duan, W. Stricker, M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperatures and species distributions,” Combust. Flame. (to be published).

J.-Y. Chen, Mechanical Engineering Department, University of California, Berkeley, Calif. 94720 (personal communication).

J. A. Miller, R. J. Kee, M. D. Smooke, J. F. Grcar, “The computation of the structure and extinction limit of a methane-air stagnation point diffusion flame,” presented at the Western States Section of the Combustion Institute, Spring Meeting1984, paper WSS/CI 84-10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Lookup table plot expressing g(x)/g(0) as a function of I(x)/I(0) calculated for 1 bar and a laser bandwidth of 0.42 cm−1 centered on the R2(13) transition. Inset, spectral laser distribution after 0%, 24%, and 45% absorption.

Fig. 2
Fig. 2

Scheme of the GT model combustor. A circular plenum and burner are coupled to a square combustion chamber.

Fig. 3
Fig. 3

Measured pressure signals in the plenum and in the combustion chamber.

Fig. 4
Fig. 4

Top view of experimental beam arrangement above the burner plate. Two cylindrical lenses L1, L3 and one spherical lens L2 are used for the sheet formation. L4, spherical lens; M, combining mirror. Four cameras were used: two for LIF detection and two for laser intensity distribution monitoring.

Fig. 5
Fig. 5

Scheme of the mean flow and reaction field with inner recirculation zone (irz) and outer recirculation zone (orz) of the flow field.

Fig. 6
Fig. 6

Single-pulse OH LIF images from the P1(2) transition (top) and corresponding temperature distributions measured with two-line OH-PLIF thermometry (bottom).

Fig. 7
Fig. 7

Influence of the strain rate on the relationship between OH mole fraction and temperature, calculated for a CH4/air counterflow diffusion flame.

Fig. 8
Fig. 8

Average temperature distribution measured with two-line OH PLIF thermometry and corresponding fraction of usable measurements (FUM).

Fig. 9
Fig. 9

Axial temperature profiles measured with Raman scattering and LIF. The FUM corresponds to the LIF temperature. The accuracy of the LIF temperature is 6%–7% and that of the Raman temperature 3%–4%.

Fig. 10
Fig. 10

Probability density function (pdf) of temperature for Raman and LIF thermometry measurements for two positions; (a) r = 0 mm and h = 10 mm and (b) r = 0 mm and h = 30 mm.

Fig. 11
Fig. 11

Assignment of the phase angle α at which the phase-locked measurements were performed with respect to the pressure in the plenum and in the combustion chamber. The pressure in the combustion chamber reaches its maximum at α ≈ 120°.

Fig. 12
Fig. 12

Phase-resolved temperature distributions for four phase angles over a period of the pressure oscillation in the plenum. Regions of low FUM (FUM < 70%) are black.

Fig. 13
Fig. 13

Phase curves of the LIF temperature and the corresponding fraction of usable measurement (FUM) at the position h = 10 mm for r = 0 mm and r = 30 mm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D ( 1 ) D ( 2 ) exp ( - E 2 - E 1 k T x , y ) = F x , y ( 1 ) F x , y ( 2 ) ξ x , y ( 2 ) I x , y ( 2 ) η x , y ( 2 ) B 2 j g ( 2 ) ξ x , y ( 1 ) I x , y ( 1 ) η x , y ( 1 ) B 1 i g ( 1 ) .
- d I ( x ) d x = α ( x ) I ( x ) ,
d I ( x ) d x = - β I ( x ) N ( x ) B g ( x ) ,
d I ( x ) d x = - β F ( x ) ξ η ( x ) = d I eff ( x ) d x ,
I eff ( x ) = I ( x ) g ( x ) , g ( x ) = 0 g L ( x , ν ) g α ( ν ) d ν ,
I eff ( x ) I eff ( 0 ) = I ( x ) I ( 0 ) g ( x ) g ( 0 ) .
I ( x ) I ( 0 ) = 1 - C 0 x F ( x ) d x ,
C = σ L 0 L F ( x ) d x .
σ L = 1 - I ( L ) I ( 0 ) .
g L ( x , ν ) = g L ( 0 , ν ) exp ( - 0 x α ( x , ν ) d x ) .
I ( x ) I ( 0 ) = 0 g L ( 0 , ν ) exp ( - 0 x α ( x , ν ) d x ) d ν .

Metrics