Abstract

A two-laser technique is used to study laser–particle interactions and the disintegration of soot by high-power UV light. Two separate 20 ns laser pulses irradiate combustion-generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm2, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm2, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm2. At higher fluences the signal from atomic carbon saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon/atom ratio, to aid in understanding laser–particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Koshland, S. L. Fischer, “Diagnostic requirements for toxic emission control,” in Applied Combustion Diagnostics,K. Kohse-Hoinghaus, J. B. Jefferies, eds. (Taylor & Francis, 2002), pp. 606–626.
  2. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
    [CrossRef] [PubMed]
  3. A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
    [CrossRef]
  4. M. Z. Jacobson, “Strong radiative heating due to the mixing state of carbon black in atmospheric aerosols,” Nature 409, 695–697 (2001).
    [CrossRef] [PubMed]
  5. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).
  6. C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
    [CrossRef]
  7. M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
    [CrossRef]
  8. K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994).
    [CrossRef]
  9. K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
    [CrossRef]
  10. S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).
  11. C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
    [CrossRef] [PubMed]
  12. C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
    [CrossRef]
  13. S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
    [CrossRef]
  14. S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
    [CrossRef]
  15. S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998).
    [CrossRef]
  16. M. H. Nunez, N. Omenetto, “Experimental investigation of sodium emission following laser photofragmentation of different sodium-containing aerosols,” Appl. Spectrosc. 55, 809–815 (2001).
    [CrossRef]
  17. M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
    [CrossRef]
  18. S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
    [CrossRef]
  19. C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001).
    [CrossRef] [PubMed]
  20. C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Real-time measurement of combustion generated particles with photofragmentation-fluorescence,” Appl. Spectrosc. 55, 1478–1482 (2001).
    [CrossRef]
  21. C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
    [CrossRef]
  22. R. C. Sausa, A. J. Alfano, A. W. Miziolek, “Efficient ArF laser production and detection of carbon atoms from simple hydrocarbons,” Appl. Opt. 26, 3588–3593 (1987).
    [CrossRef] [PubMed]
  23. M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon–fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
    [CrossRef]
  24. R. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  25. J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005).
    [CrossRef] [PubMed]
  26. M. F. Modest, Radiative Heat Transfer, 1st ed. (McGraw-Hill, 1993).
  27. C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002).
    [CrossRef]
  28. A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
    [CrossRef]
  29. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
    [CrossRef]
  30. C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
    [CrossRef]
  31. R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
    [CrossRef]
  32. P. E. Dyer, R. Srininvasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986).
    [CrossRef]
  33. J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
    [CrossRef] [PubMed]
  34. D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
    [CrossRef]
  35. E. A. Rohlfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
    [CrossRef]

2005 (2)

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005).
[CrossRef] [PubMed]

2004 (1)

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

2002 (4)

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002).
[CrossRef]

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

2001 (4)

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001).
[CrossRef] [PubMed]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Real-time measurement of combustion generated particles with photofragmentation-fluorescence,” Appl. Spectrosc. 55, 1478–1482 (2001).
[CrossRef]

M. Z. Jacobson, “Strong radiative heating due to the mixing state of carbon black in atmospheric aerosols,” Nature 409, 695–697 (2001).
[CrossRef] [PubMed]

M. H. Nunez, N. Omenetto, “Experimental investigation of sodium emission following laser photofragmentation of different sodium-containing aerosols,” Appl. Spectrosc. 55, 809–815 (2001).
[CrossRef]

2000 (2)

M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
[CrossRef]

A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
[CrossRef]

1999 (1)

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

1998 (2)

S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998).
[CrossRef]

D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
[CrossRef]

1996 (4)

R. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
[CrossRef]

1994 (4)

K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994).
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
[CrossRef]

1993 (1)

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

1988 (1)

E. A. Rohlfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
[CrossRef]

1987 (1)

1986 (3)

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon–fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
[CrossRef]

P. E. Dyer, R. Srininvasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986).
[CrossRef]

Alfano, A. J.

Almanza, J.

S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).

Baumann, H.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

Bonn, B.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

Bor, Z.

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

Braren, B.

R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
[CrossRef]

Buckley, S. G.

S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
[CrossRef]

S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998).
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

Carranza, J. E.

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

Cavalli, P.

Cheng, M. D.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Choi, J. H.

J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005).
[CrossRef] [PubMed]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

Dai, X.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Damm, C. J.

Ding, Y.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Dockery, D. W.

A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
[CrossRef]

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Dreyfus, W.

R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
[CrossRef]

Duscher, G.

D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
[CrossRef]

Dyer, P. E.

P. E. Dyer, R. Srininvasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986).
[CrossRef]

Fay, M. E.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Ferris, B. G.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Fischer, S. L.

C. P. Koshland, S. L. Fischer, “Diagnostic requirements for toxic emission control,” in Applied Combustion Diagnostics,K. Kohse-Hoinghaus, J. B. Jefferies, eds. (Taylor & Francis, 2002), pp. 606–626.

Geohegan, D. B.

D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
[CrossRef]

Griggs, D. J.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Hahn, D. W.

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

Hanson, R. K.

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon–fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Hartinger, K. T.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

Heszler, P.

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

Higgins, B. S.

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

Houghton, J. T.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Jacobson, M. Z.

M. Z. Jacobson, “Strong radiative heating due to the mixing state of carbon black in atmospheric aerosols,” Nature 409, 695–697 (2001).
[CrossRef] [PubMed]

Johnson, C. A.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Koshland, C. P.

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005).
[CrossRef] [PubMed]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002).
[CrossRef]

S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001).
[CrossRef] [PubMed]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Real-time measurement of combustion generated particles with photofragmentation-fluorescence,” Appl. Spectrosc. 55, 1478–1482 (2001).
[CrossRef]

S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998).
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

C. P. Koshland, S. L. Fischer, “Diagnostic requirements for toxic emission control,” in Applied Combustion Diagnostics,K. Kohse-Hoinghaus, J. B. Jefferies, eds. (Taylor & Francis, 2002), pp. 606–626.

Kovacs, M.

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

Lee, M. P.

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon–fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Lucas, D.

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005).
[CrossRef] [PubMed]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002).
[CrossRef]

S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Real-time measurement of combustion generated particles with photofragmentation-fluorescence,” Appl. Spectrosc. 55, 1478–1482 (2001).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001).
[CrossRef] [PubMed]

S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998).
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

Martin, M. Z.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Martin, R. C.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Marton, Z.

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

Mashell, K.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

McEnally, C. S.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
[CrossRef]

Mechler, A.

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

Mittleman, M. A.

A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
[CrossRef]

Miziolek, A. W.

Modest, M. F.

M. F. Modest, Radiative Heat Transfer, 1st ed. (McGraw-Hill, 1993).

Monkhouse, P. B.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

Morrison, D.

S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).

Muller, J. E.

A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
[CrossRef]

Noguer, M.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Nordmeyer, T.

K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994).
[CrossRef]

Nunez, M. H.

O’Donovan, N. J.

Omenetto, N.

Penny-cook, S. J.

D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
[CrossRef]

Peters, A.

A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
[CrossRef]

Petrucci, G.

Pope, C. A.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Prather, K. A.

K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994).
[CrossRef]

Puretzky, A. A.

D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
[CrossRef]

Rice, S.

S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).

Rohlfing, E. A.

E. A. Rohlfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
[CrossRef]

Salt, K.

K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

R. C. Sausa, A. J. Alfano, A. W. Miziolek, “Efficient ArF laser production and detection of carbon atoms from simple hydrocarbons,” Appl. Opt. 26, 3588–3593 (1987).
[CrossRef] [PubMed]

Sawyer, R. F.

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005).
[CrossRef] [PubMed]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002).
[CrossRef]

S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001).
[CrossRef] [PubMed]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Real-time measurement of combustion generated particles with photofragmentation-fluorescence,” Appl. Spectrosc. 55, 1478–1482 (2001).
[CrossRef]

S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998).
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
[CrossRef]

Seeger, D. E.

R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
[CrossRef]

Sgro, L. A.

Simeonsson, J. B.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Speizer, F. E.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Spengler, J. D.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Srininvasan, R.

R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
[CrossRef]

P. E. Dyer, R. Srininvasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986).
[CrossRef]

Stipe, C. B.

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

Szorenyi, T.

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

van der Linden, P. J.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Vander Wal, R.

Velez, M.

S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).

Vitovec, W. M.

Ware, J. H.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Wolfrum, J.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

Xu, X.

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Aerosol Sci. Technol. (1)

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Anal. Chem. (2)

K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994).
[CrossRef]

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998).
[CrossRef]

P. E. Dyer, R. Srininvasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986).
[CrossRef]

Appl. Spectrosc. (4)

Appl. Spectrosc. Rev. (1)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Chemosphere (1)

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001).
[CrossRef] [PubMed]

Circulation (1)

A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000).
[CrossRef]

Combust. Flame (1)

S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002).
[CrossRef]

Combust. Sci. Technol. (1)

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

J. Chem. Phys. (1)

E. A. Rohlfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
[CrossRef]

J. Nanoparticle Res. (1)

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon–fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Macromolecules (1)

R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986).
[CrossRef]

Nature (1)

M. Z. Jacobson, “Strong radiative heating due to the mixing state of carbon black in atmospheric aerosols,” Nature 409, 695–697 (2001).
[CrossRef] [PubMed]

New Engl. J. Med. (1)

D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993).
[CrossRef] [PubMed]

Proc. Combust. Inst. (5)

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994).
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005).
[CrossRef]

Other (5)

M. F. Modest, Radiative Heat Transfer, 1st ed. (McGraw-Hill, 1993).

A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000).
[CrossRef]

S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).

C. P. Koshland, S. L. Fischer, “Diagnostic requirements for toxic emission control,” in Applied Combustion Diagnostics,K. Kohse-Hoinghaus, J. B. Jefferies, eds. (Taylor & Francis, 2002), pp. 606–626.

J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental apparatus.

Fig. 2
Fig. 2

Two-laser fragmentation by 193 nm photons of soot particles in air. The atomic carbon fluorescence produced by the first laser is shown as filled diamonds, and the fluorescence produced by the second pulse is shown as open circles (1 μs) and open triangles (100 ns). The fluence of the first pulse varies from 0 to 14.7 J/cm2, while the second pulse is constant at 13 J/cm2. These data are 100-shot averages taken at a laser repetition rate of 10 Hz.

Fig. 3
Fig. 3

Carbon fluorescence from the second laser pulse as a function of pulse separation time from 0 to 3 μs. The decrease in signal between laser pulses is likely due to oxidation of atomic carbon, carbon molecules, and soot particles remaining after the first laser pulse. The signal remains constant from 1 to 10 μs.

Metrics