Abstract

We report on use of cavity ring-down spectroscopy (CRDS) as a means to detect and quantify ion sputtering of refractory metal species. CRDS measurements are made with a neodymium:YAG-pumped optical parametric oscillator laser system in the 375–400 nm region. CRDS sputtering measurements are presented for argon ions incident on iron, aluminum, molybdenum, and titanium. The measurements are based on absorption from fine-structure levels of the electronic ground-state multiplets. For each species, characteristic spectra are provided, the dependence of sputtered particle number density on the beam current is examined, measured densities are compared with a sputter model, and detection limits are determined. For iron, aluminum, and titanium we probe multiple fine-structure levels within the ground-state multiplet and obtain information on their relative populations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981).
    [CrossRef]
  2. M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
    [CrossRef]
  3. R. D. Kolasinski, J. E. Polk, “Characterization of cathode keeper by surface layer activation,” paper AIAA-2003–5144, presented at the Thirty-Ninth Joint Propulsion Conference, Huntsville, Alabama, 20–23 June 2003) (American Institute of Aeronautics and Astronautics2003).
  4. N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982).
    [CrossRef]
  5. R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003).
    [CrossRef]
  6. H. L. Bay, “Laser induced fluorescence as a technique for investigations of sputtering phenomena,” Nucl. Instrum. Methods Phys. Res. B 18, 430–445 (1987).
    [CrossRef]
  7. H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
    [CrossRef]
  8. E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
    [CrossRef]
  9. C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
    [CrossRef]
  10. F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
    [CrossRef]
  11. E. Dullni, “Laser fluorescence measurements of the flux density of titanium sputtered from an oxygen covered surface,” Appl. Phys. A 38, 131–138 (1985).
    [CrossRef]
  12. R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
    [CrossRef]
  13. G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
    [CrossRef]
  14. A. Goehlich, “Investigation of time-of-flight and energy distributions of atoms and molecules sputtered from oxygen-covered metal surfaces by laser techniques,” Appl. Phys. A 72, 523–529 (2001).
    [CrossRef]
  15. C. Staudt, A. Wucher, “Sputtering of Ag atoms into metastable excited states,” Phys. Rev. B 66, 085415-1-12 (2002).
    [CrossRef]
  16. V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
    [CrossRef]
  17. A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
    [CrossRef]
  18. J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
    [CrossRef]
  19. K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium Series 720 (Oxford U. Press, 1999).
    [CrossRef]
  20. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  21. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  22. A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).
  23. W. R. Hudson, B. A. Banks, “An 8-cm electron bombardment, thruster for anxiluary propulsion,” paper AIAA-73-1131, paper presented at Tenth Electric Propulsion Conference, Lake Tahoe, Nevada, 21–23 October 1973. (American Institute of Aeronautics and Astronautics, 1973).
  24. National Institute of Standards and Technology database available in monographs at http://physics.nist.gov/cgi-bin/AtData/lines_form .
  25. Y. Yamamura, H. Tawara, “Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence,” At. Data Nucl. Data Tables 62, 149–253 (1996).
    [CrossRef]
  26. G. Betz, K. Wien, “Review: energy and angular distributions of sputtered particle,” Int. J. Mass Spectrom. Ion Processes 140, 1–110 (1994).
    [CrossRef]
  27. J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.
  28. G. Betz, “Electronic excitation in sputtered atoms and the oxygen effect,” Nucl. Instrum. Methods Phys. Res. B 27, 104–118 (1987).
    [CrossRef]
  29. J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
    [CrossRef]
  30. J. E. Polk, “An overview of the results from an 8200 hour wear test of the NSTAR ion thruster,” paper AIAA-99-2446, presented at the Joint Propulsion Conference, Los Angeles, California, June 1999 (American Institute of Aeronautics and Astronautics, 1999).

2004

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

2003

R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003).
[CrossRef]

2002

C. Staudt, A. Wucher, “Sputtering of Ag atoms into metastable excited states,” Phys. Rev. B 66, 085415-1-12 (2002).
[CrossRef]

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

2001

A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
[CrossRef]

A. Goehlich, “Investigation of time-of-flight and energy distributions of atoms and molecules sputtered from oxygen-covered metal surfaces by laser techniques,” Appl. Phys. A 72, 523–529 (2001).
[CrossRef]

2000

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

1999

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

1996

Y. Yamamura, H. Tawara, “Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence,” At. Data Nucl. Data Tables 62, 149–253 (1996).
[CrossRef]

1995

G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

1994

G. Betz, K. Wien, “Review: energy and angular distributions of sputtered particle,” Int. J. Mass Spectrom. Ion Processes 140, 1–110 (1994).
[CrossRef]

1987

G. Betz, “Electronic excitation in sputtered atoms and the oxygen effect,” Nucl. Instrum. Methods Phys. Res. B 27, 104–118 (1987).
[CrossRef]

H. L. Bay, “Laser induced fluorescence as a technique for investigations of sputtering phenomena,” Nucl. Instrum. Methods Phys. Res. B 18, 430–445 (1987).
[CrossRef]

1985

E. Dullni, “Laser fluorescence measurements of the flux density of titanium sputtered from an oxygen covered surface,” Appl. Phys. A 38, 131–138 (1985).
[CrossRef]

1984

C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
[CrossRef]

1982

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982).
[CrossRef]

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
[CrossRef]

1981

M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981).
[CrossRef]

1980

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
[CrossRef]

Andersen, N.

N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982).
[CrossRef]

Andresen, B.

N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982).
[CrossRef]

Banks, B. A.

W. R. Hudson, B. A. Banks, “An 8-cm electron bombardment, thruster for anxiluary propulsion,” paper AIAA-73-1131, paper presented at Tenth Electric Propulsion Conference, Lake Tahoe, Nevada, 21–23 October 1973. (American Institute of Aeronautics and Astronautics, 1973).

Bastiaansen, J.

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

Bay, H. L.

H. L. Bay, “Laser induced fluorescence as a technique for investigations of sputtering phenomena,” Nucl. Instrum. Methods Phys. Res. B 18, 430–445 (1987).
[CrossRef]

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Betz, G.

G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
[CrossRef]

G. Betz, K. Wien, “Review: energy and angular distributions of sputtered particle,” Int. J. Mass Spectrom. Ion Processes 140, 1–110 (1994).
[CrossRef]

G. Betz, “Electronic excitation in sputtered atoms and the oxygen effect,” Nucl. Instrum. Methods Phys. Res. B 27, 104–118 (1987).
[CrossRef]

Biennier, L.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Bogen, P.

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
[CrossRef]

Bohdansky, J.

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

Booth, J. P.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Borra, M.

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

Brockhaus, A.

A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
[CrossRef]

Busch, K. W.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium Series 720 (Oxford U. Press, 1999).
[CrossRef]

Busch, M. A.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium Series 720 (Oxford U. Press, 1999).
[CrossRef]

Calaway, W. F.

C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
[CrossRef]

Coppotelli, F.

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

Cunge, G.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Dewald, A. B.

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

Doerner, R. P.

R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003).
[CrossRef]

Dullni, E.

E. Dullni, “Laser fluorescence measurements of the flux density of titanium sputtered from an oxygen covered surface,” Appl. Phys. A 38, 131–138 (1985).
[CrossRef]

Engemann, J.

A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
[CrossRef]

Gardner, M. M.

J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.

Gatti, G.

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

Georg, A.

A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
[CrossRef]

Goebel, D. M.

R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003).
[CrossRef]

Goehlich, A.

A. Goehlich, “Investigation of time-of-flight and energy distributions of atoms and molecules sputtered from oxygen-covered metal surfaces by laser techniques,” Appl. Phys. A 72, 523–529 (2001).
[CrossRef]

Gruber, D.

G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
[CrossRef]

Gruen, D. M.

C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
[CrossRef]

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981).
[CrossRef]

R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
[CrossRef]

Hintz, E.

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
[CrossRef]

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

Hudson, W. R.

W. R. Hudson, B. A. Banks, “An 8-cm electron bombardment, thruster for anxiluary propulsion,” paper AIAA-73-1131, paper presented at Tenth Electric Propulsion Conference, Lake Tahoe, Nevada, 21–23 October 1973. (American Institute of Aeronautics and Astronautics, 1973).

Husinsky, W.

G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
[CrossRef]

Johnson, M.

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.

Kachanov, A.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Kolasinski, R. D.

R. D. Kolasinski, J. E. Polk, “Characterization of cathode keeper by surface layer activation,” paper AIAA-2003–5144, presented at the Thirty-Ninth Joint Propulsion Conference, Huntsville, Alabama, 20–23 June 2003) (American Institute of Aeronautics and Astronautics2003).

Lievens, P.

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

Martinelli, A. P.

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Mendelsohn, M. H.

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

Neri, E.

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

Nicolussi, G.

G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
[CrossRef]

Orsitto, F.

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Pellin, M. J.

C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
[CrossRef]

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981).
[CrossRef]

R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
[CrossRef]

Philipsen, V.

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

Polk, J. E.

R. D. Kolasinski, J. E. Polk, “Characterization of cathode keeper by surface layer activation,” paper AIAA-2003–5144, presented at the Thirty-Ninth Joint Propulsion Conference, Huntsville, Alabama, 20–23 June 2003) (American Institute of Aeronautics and Astronautics2003).

J. E. Polk, “An overview of the results from an 8200 hour wear test of the NSTAR ion thruster,” paper AIAA-99-2446, presented at the Joint Propulsion Conference, Los Angeles, California, June 1999 (American Institute of Aeronautics and Astronautics, 1999).

Romanini, D.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Roth, J.

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

Rusbüldt, D.

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

Schwabedissen, A.

A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
[CrossRef]

Schweer, B.

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
[CrossRef]

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

Silverans, R. E.

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

Staudt, C.

C. Staudt, A. Wucher, “Sputtering of Ag atoms into metastable excited states,” Phys. Rev. B 66, 085415-1-12 (2002).
[CrossRef]

Surla, V.

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

Tawara, H.

Y. Yamamura, H. Tawara, “Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence,” At. Data Nucl. Data Tables 62, 149–253 (1996).
[CrossRef]

Vandeweert, E.

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

Veje, E.

N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982).
[CrossRef]

Whyte, D. G.

R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003).
[CrossRef]

Wien, K.

G. Betz, K. Wien, “Review: energy and angular distributions of sputtered particle,” Int. J. Mass Spectrom. Ion Processes 140, 1–110 (1994).
[CrossRef]

Wilbur, P. J.

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.

Williams, J. D.

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.

Wright, R. B.

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981).
[CrossRef]

R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
[CrossRef]

Wucher, A.

C. Staudt, A. Wucher, “Sputtering of Ag atoms into metastable excited states,” Phys. Rev. B 66, 085415-1-12 (2002).
[CrossRef]

Yalin, A. P.

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

Yamamura, Y.

Y. Yamamura, H. Tawara, “Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence,” At. Data Nucl. Data Tables 62, 149–253 (1996).
[CrossRef]

Young, C. E.

C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
[CrossRef]

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
[CrossRef]

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Appl. Phys. A

E. Dullni, “Laser fluorescence measurements of the flux density of titanium sputtered from an oxygen covered surface,” Appl. Phys. A 38, 131–138 (1985).
[CrossRef]

A. Goehlich, “Investigation of time-of-flight and energy distributions of atoms and molecules sputtered from oxygen-covered metal surfaces by laser techniques,” Appl. Phys. A 72, 523–529 (2001).
[CrossRef]

At. Data Nucl. Data Tables

Y. Yamamura, H. Tawara, “Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence,” At. Data Nucl. Data Tables 62, 149–253 (1996).
[CrossRef]

Chem. Phys. Lett.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Int. J. Mass Spectrom. Ion Processes

G. Betz, K. Wien, “Review: energy and angular distributions of sputtered particle,” Int. J. Mass Spectrom. Ion Processes 140, 1–110 (1994).
[CrossRef]

Int. Rev. Phys. Chem.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Appl. Phys.

R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003).
[CrossRef]

J. Chem. Phys.

M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Nucl. Mater.

M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982).
[CrossRef]

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982).
[CrossRef]

E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980).
[CrossRef]

J. Phys. D

A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001).
[CrossRef]

J. Vac. Sci. Technol. A

C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984).
[CrossRef]

Laser Phys.

A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).

Nucl. Instrum. Methods

R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

H. L. Bay, “Laser induced fluorescence as a technique for investigations of sputtering phenomena,” Nucl. Instrum. Methods Phys. Res. B 18, 430–445 (1987).
[CrossRef]

G. Betz, “Electronic excitation in sputtered atoms and the oxygen effect,” Nucl. Instrum. Methods Phys. Res. B 27, 104–118 (1987).
[CrossRef]

Phys. Rev. A

J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004).
[CrossRef]

Phys. Rev. B

G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995).
[CrossRef]

C. Staudt, A. Wucher, “Sputtering of Ag atoms into metastable excited states,” Phys. Rev. B 66, 085415-1-12 (2002).
[CrossRef]

Radiat. Eff.

N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982).
[CrossRef]

Rev. Sci. Instrum.

V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004).
[CrossRef]

F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999).
[CrossRef]

Other

R. D. Kolasinski, J. E. Polk, “Characterization of cathode keeper by surface layer activation,” paper AIAA-2003–5144, presented at the Thirty-Ninth Joint Propulsion Conference, Huntsville, Alabama, 20–23 June 2003) (American Institute of Aeronautics and Astronautics2003).

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium Series 720 (Oxford U. Press, 1999).
[CrossRef]

J. E. Polk, “An overview of the results from an 8200 hour wear test of the NSTAR ion thruster,” paper AIAA-99-2446, presented at the Joint Propulsion Conference, Los Angeles, California, June 1999 (American Institute of Aeronautics and Astronautics, 1999).

J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.

W. R. Hudson, B. A. Banks, “An 8-cm electron bombardment, thruster for anxiluary propulsion,” paper AIAA-73-1131, paper presented at Tenth Electric Propulsion Conference, Lake Tahoe, Nevada, 21–23 October 1973. (American Institute of Aeronautics and Astronautics, 1973).

National Institute of Standards and Technology database available in monographs at http://physics.nist.gov/cgi-bin/AtData/lines_form .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the CRDS setup. Sputtered species are created as the ion beam bombards the target. The sputtered species are contained within the high-finesse ring-down cavity where they absorb light. An OPO laser system is used as the light source, and a photomultiplier tube (PMT) detects the light exiting the cavity. High R, high reflectivity.

Fig. 2
Fig. 2

(a) Partial energy-level diagram for iron. (b) Iron absorbance spectrum recorded by CRDS.

Fig. 3
Fig. 3

(a) Partial energy-level diagram for aluminum. (b) Aluminum absorbance spectrum recorded by CRDS.

Fig. 4
Fig. 4

(a) Partial energy-level diagram for titanium. (b) Titanium absorbance spectrum recorded by CRDS.

Fig. 5
Fig. 5

Dependence of iron number density on beam current (BC).

Fig. 6
Fig. 6

Boltzmann analysis of sputtered titanium.

Fig. 7
Fig. 7

Dependence of Boltzmann temperature on ion energy. Linear fits are added as guides.

Tables (2)

Tables Icon

Table 1 Comparison of Path-Integrated Number Densities Found from CRDS and the Sputter Model

Tables Icon

Table 2 Minimum Detectable Path-integrated Number Densities by CRDS

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( t , ν ) = S 0 exp [ - t / τ ( ν ) ] , 1 / τ ( ν ) = c l [ k eff ( x , ν ) d x + ( 1 - R ) ] ; k eff ( ν ) - + d ν L ( ν - v ) k ( ν ) ,
abs eff ( ν ) l abs k eff ( ν ) = l c [ 1 τ ( ν ) - 1 τ 0 ] .
N i d x = 8 π g i g k v k i 2 A k i c 2 [ abs eff ( ν ) d ν ] ,

Metrics