Abstract

Hollow polycarbonate waveguides with thin-film coatings of Ag–AgI were fabricated by liquid-phase chemistry methods. These hollow waveguides, which have bore sizes ranging from 500 to 2000 μm and lengths as long as 2 m, are transmissive from 2 to more than 20 μm. The lowest loss of 0.02 dB/m was obtained for a straight 2000 μm bore guide at 10.6 μm. This is to our knowledge the lowest loss measured for any IR fiber at CO2 laser wavelengths. The bending losses were found to increase as 1/R, where R is the radius of the bend. These waveguides were able to withstand 18 W of CO2 laser input power for bore sizes greater than 1000 μm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2004).
    [CrossRef]
  2. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef] [PubMed]
  3. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef] [PubMed]
  4. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  5. D. J. Haan, J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” in Specialty Fiber Optics for Medical Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE3596, 43–49 (1999).
    [CrossRef]
  6. J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
    [CrossRef]
  7. C. Rabii, D. J. Gibson, J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38, 4486–4493 (1999).
    [CrossRef]
  8. R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
    [CrossRef]
  9. B. Schweig, Mirrors—A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, 1973).
  10. K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  12. Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255–1259 (1997).
    [CrossRef]
  13. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  14. M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).
  15. R. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
    [CrossRef]
  16. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  17. M. Miyagi, S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt. 20, 4221–4226 (1981).
    [CrossRef] [PubMed]

2002 (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

1999 (2)

C. Rabii, D. J. Gibson, J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38, 4486–4493 (1999).
[CrossRef]

M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).

1998 (2)

R. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

1995 (1)

1992 (1)

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

1989 (1)

1981 (1)

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Abel, T.

Ben David, M.

M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Bladon, J.

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Croitoru, N.

M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Dahan, R.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Dror, J.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Gannot, I.

M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).

Gibson, D. J.

Haan, D. J.

D. J. Haan, J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” in Specialty Fiber Optics for Medical Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE3596, 43–49 (1999).
[CrossRef]

Harrington, J. A.

C. Rabii, D. J. Gibson, J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38, 4486–4493 (1999).
[CrossRef]

R. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255–1259 (1997).
[CrossRef]

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2004).
[CrossRef]

D. J. Haan, J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” in Specialty Fiber Optics for Medical Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE3596, 43–49 (1999).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Hongo, A.

Inberg, A.

M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).

Joannopoulos, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Kawakami, S.

Lamola, A.

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

Lytle, F.

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Miyagi, M.

Nubling, R.

R. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Philipose, G.

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

Rabii, C.

Robinson, J.

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

Saito, M.

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Schweig, B.

B. Schweig, Mirrors—A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, 1973).

Sonnenberg, W.

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Thomas, E.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

J. Electrochem. Soc. (1)

J. Bladon, A. Lamola, F. Lytle, W. Sonnenberg, J. Robinson, G. Philipose, “A palladium sulfide catalyst for electrolytic plating,” J. Electrochem. Soc. 143, 1206–1213 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Optoelectron. Adv. Mater. (1)

M. Ben David, A. Inberg, I. Gannot, N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” J. Optoelectron. Adv. Mater. 1, 23–30 (1999).

Mater. Res. Bull. (1)

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Opt. Eng. (2)

R. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Other (4)

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2004).
[CrossRef]

D. J. Haan, J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” in Specialty Fiber Optics for Medical Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE3596, 43–49 (1999).
[CrossRef]

B. Schweig, Mirrors—A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, 1973).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the hollow polycarbonate waveguide, showing the Ag and AgI dielectric films for high reflectivity.

Fig. 2
Fig. 2

Experimental arrangement for the deposition of Ag films inside polycarbonate tubing. A peristaltic pump is used to force the solutions through the tubing. A similar setup is used for iodization to form the AgI coating.

Fig. 3
Fig. 3

Optical constants for Ag films measured with a spectroscopic ellipsometer.

Fig. 4
Fig. 4

Refractive index for a AgI film deposited on to a Ag film. Measurements were made with a spectroscopic ellipsometer.

Fig. 5
Fig. 5

Calculated spectral loss for a 1000 μm bore Ag–AgI waveguide. The ideal case assumes perfectly smooth films and substrate, whereas the rough surface calculations were made with our measured values for the surface roughness of Ag and AgI films.

Fig. 6
Fig. 6

Measured (open squares) loss at 10.6 μm for several bore sizes of waveguides. The calculated (solid curve) values are for the HE11 mode.

Fig. 7
Fig. 7

Spatial output mode profiles of (a) 500 and (b) 2000 μm bore hollow polycarbonate waveguide with a TEM00 input from a CO2 laser.

Fig. 8
Fig. 8

Bending losses for 500 and 2000 μm bore waveguides for bending in planes parallel and perpendicular to the plane of bending.

Fig. 9
Fig. 9

Spatial output mode profile for straight (left) and bent (right, R = 0.1 m) 500 and 2000 μm bore waveguides.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ a AgI = λ 0 2 π n AgI 2 - 1 tan - 1 [ n AgI ( n AgI 2 - 1 ) 1 / 4 ] ,
n ( λ ) = 1.8454 - 01186 λ + 0.0443 λ 2 - 0.0005 λ 3 , k ( λ ) = 119.97 - 1720 λ + 11677.07 λ 2 - 37261.57 λ 3 + 44833.36 λ 4 ,
n ( λ ) = 1.956 - 0.239 λ + 1.920 λ 2 - 2.678 λ 3 + 1.233 λ 4 ,
r i + 1 = r i + 1 , i A i + 1 , i + ( 1 - r i + 1 , i 2 ) B i + 1 , i 2 r i exp ( - j k i ) 1 + r i + 1 , i A i + 1 , i r i exp ( - j k i ) ,
A i + 1 , i = exp [ - 1 2 ( 2 k 0 σ i + 1 , i n i + 1 sin θ i + 1 ) 2 ] , B i + 1 , i = exp { - 1 2 [ k 0 σ i + 1 , i ( n i + 1 sin θ i + 1 - n i sin θ i ) ] 2 } .
2 α = 1 - R 2 a cot θ .
α n m = ( u n m 2 π ) 2 λ 2 a 3 Re ( ν n ) = ( u n m 2 π ) 2 λ 2 a 3 Re [ ½ ( ν n 2 + 1 ) ν n 2 - 1 ] ,
θ n m = sin - 1 ( u n - 1 , m 2 a k 0 ) ,

Metrics