Abstract

We analyze the effect of cross-talk noise on the performance of free-space optical interconnects (FSOIs). In addition to diffraction-caused cross talk, we consider the effect of stray-light cross-talk noise, an issue that, to the best of our knowledge, was not addressed previously. Simulations were performed on a microlens-based FSOI system using the modal composition and beam profiles experimentally extracted from a commercial vertical-cavity surface-emitting laser. We demonstrate that this cross-talk noise introduces significant degradation to interconnect performance, particularly for multitransverse-mode laser sources. A simple behavioral model is also developed that accurately approximates the cross talk noise for a range of optical sources and interconnect configurations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [CrossRef]
  3. D. V. Plant, A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE 88, 806–818 (2000).
    [CrossRef]
  4. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
    [CrossRef]
  5. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
    [CrossRef]
  6. K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
    [CrossRef]
  7. R. H. Havemann, J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89, 586–601 (2001).
    [CrossRef]
  8. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  9. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
    [CrossRef]
  10. M. Châteauneüf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
    [CrossRef] [PubMed]
  11. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
    [CrossRef]
  12. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
    [CrossRef]
  13. G. Li, D. Huang, E. Yuceturk, P. J. Marchand, S. C. Esener, V. H. Ozguz, Y. Liu, “Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks,” Appl. Opt. 41, 348–360 (2002).
    [CrossRef] [PubMed]
  14. R. Wong, A. D. Rakic, M. L. Majewski, “Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays,” Appl. Opt. 41, 3469–3478 (2002).
    [CrossRef]
  15. R. Wong, A. D. Rakic, M. L. Majewski, “Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers,” Opt. Commun. 167, 261–271 (1999).
    [CrossRef]
  16. X. Zheng, P. J. Marchand, D. Huang, S. C. Esener, “Free-space parallel multichip interconnection system,” Appl. Opt. 39, 3516–3524 (2000).
    [CrossRef]
  17. N. S. Petrovic, A. D. Rakic, “Modeling diffraction in free-space optical interconnects by the mode expansion method,” Appl. Opt. 42, 5308–5318 (2003).
    [CrossRef] [PubMed]
  18. X. Zheng, P. J. Marchand, D. Huang, O. Kibar, S. C. Esener, “Cross talk and ghost talk in a microbeam free-space optical interconnect system with vertical-cavity surface-emitting lasers, microlens, and metal-semiconductor-metal detectors,” Appl. Opt. 39, 4834–4841 (2000).
    [CrossRef]
  19. F. Lacroix, M. Châteauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
    [CrossRef]
  20. A. E. Siegman, Lasers (University Science Books, 1986).

2003 (1)

2002 (4)

2001 (1)

R. H. Havemann, J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89, 586–601 (2001).
[CrossRef]

2000 (7)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

D. V. Plant, A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE 88, 806–818 (2000).
[CrossRef]

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

X. Zheng, P. J. Marchand, D. Huang, O. Kibar, S. C. Esener, “Cross talk and ghost talk in a microbeam free-space optical interconnect system with vertical-cavity surface-emitting lasers, microlens, and metal-semiconductor-metal detectors,” Appl. Opt. 39, 4834–4841 (2000).
[CrossRef]

F. Lacroix, M. Châteauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
[CrossRef]

X. Zheng, P. J. Marchand, D. Huang, S. C. Esener, “Free-space parallel multichip interconnection system,” Appl. Opt. 39, 3516–3524 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

1992 (2)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Ahearn, J. D.

Allerman, A. A.

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
[CrossRef]

Bartelt, H.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Bertilsson, K.

Chandramani, P.

Châteauneuf, M.

Châteauneüf, M.

Choquette, K. D.

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
[CrossRef]

Christensen, M. P.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Coldren, L. A.

Ekman, J.

Erhard, W.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Esener, S. C.

Feldblum, A. Y.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Fey, D.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Geib, K. M.

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
[CrossRef]

Grimm, G.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Gruber, M.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Haney, M. W.

Hargett, T. W.

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
[CrossRef]

Havemann, R. H.

R. H. Havemann, J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89, 586–601 (2001).
[CrossRef]

Hibbs-Brenner, M.

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Hoppe, L.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Huang, D.

Hutchby, J. A.

R. H. Havemann, J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89, 586–601 (2001).
[CrossRef]

Ishikawa, M.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

Jahns, J.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Kiamilev, F.

Kibar, O.

Kirk, A. G.

Kobayashi, Y.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

Lacroix, F.

Li, G.

Liu, Y.

Louderback, D. A.

Majewski, M. L.

R. Wong, A. D. Rakic, M. L. Majewski, “Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays,” Appl. Opt. 41, 3469–3478 (2002).
[CrossRef]

R. Wong, A. D. Rakic, M. L. Majewski, “Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers,” Opt. Commun. 167, 261–271 (1999).
[CrossRef]

Marchand, P. J.

McArdle, N.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Mersereau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

Milojkovic, P.

Naruse, M.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

Ozguz, V. H.

Petrovic, N. S.

Plant, D. V.

Rakic, A. D.

Rozier, R.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Serkland, D. K.

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sinzinger, S.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

Strzelecka, E. M.

Thibeault, B. J.

Thompson, G. B.

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Toyoda, H.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

Wong, R.

R. Wong, A. D. Rakic, M. L. Majewski, “Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays,” Appl. Opt. 41, 3469–3478 (2002).
[CrossRef]

R. Wong, A. D. Rakic, M. L. Majewski, “Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers,” Opt. Commun. 167, 261–271 (1999).
[CrossRef]

Xue, X.

Yamamoto, T.

Yuceturk, E.

Zheng, X.

Appl. Opt. (9)

M. Châteauneüf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
[CrossRef]

G. Li, D. Huang, E. Yuceturk, P. J. Marchand, S. C. Esener, V. H. Ozguz, Y. Liu, “Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks,” Appl. Opt. 41, 348–360 (2002).
[CrossRef] [PubMed]

R. Wong, A. D. Rakic, M. L. Majewski, “Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays,” Appl. Opt. 41, 3469–3478 (2002).
[CrossRef]

X. Zheng, P. J. Marchand, D. Huang, S. C. Esener, “Free-space parallel multichip interconnection system,” Appl. Opt. 39, 3516–3524 (2000).
[CrossRef]

N. S. Petrovic, A. D. Rakic, “Modeling diffraction in free-space optical interconnects by the mode expansion method,” Appl. Opt. 42, 5308–5318 (2003).
[CrossRef] [PubMed]

X. Zheng, P. J. Marchand, D. Huang, O. Kibar, S. C. Esener, “Cross talk and ghost talk in a microbeam free-space optical interconnect system with vertical-cavity surface-emitting lasers, microlens, and metal-semiconductor-metal detectors,” Appl. Opt. 39, 4834–4841 (2000).
[CrossRef]

F. Lacroix, M. Châteauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Sel. Top. Quantum Electron. 8, 943–947 (2002).
[CrossRef]

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

Opt. Commun. (1)

R. Wong, A. D. Rakic, M. L. Majewski, “Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers,” Opt. Commun. 167, 261–271 (1999).
[CrossRef]

Opt. Quantum Electron. (2)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Corrigendum: ‘Optical interconnections using microlens arrays,’” Opt. Quantum Electron. 24, 1209–1212 (1992).
[CrossRef]

Proc. IEEE (5)

R. H. Havemann, J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89, 586–601 (2001).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

D. V. Plant, A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE 88, 806–818 (2000).
[CrossRef]

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architecture,” Proc. IEEE 88, 838–847 (2000).
[CrossRef]

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88, 829–837 (2000).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of a free-space optical interconnect, showing the diffraction-caused and the stray-light cross talk.

Fig. 2
Fig. 2

(a) Schematic of a microchannel free-space optical interconnect. (b) Structure of the Tx or Rx microlens array with xy axis.

Fig. 3
Fig. 3

Experimental configuration. The VCSEL’s optical spectrum and beam profile were measured.

Fig. 4
Fig. 4

Spectral evolution of the MicroOptical Devices, model 8085-2008, VCSEL.

Fig. 5
Fig. 5

Modally resolved light-current curve.

Fig. 6
Fig. 6

Extracted and calculated laser beam profiles.

Fig. 7
Fig. 7

Visual representations of (a) diffraction-caused cross talk and (b) stray-light cross talk.

Fig. 8
Fig. 8

Normalized stray-light cross-talk noise with increasing channel density (channels/mm2) for several modes.

Fig. 9
Fig. 9

Normalized stray-light cross-talk noise with increasing interconnection distance for different modes.

Fig. 10
Fig. 10

(a) Comparison of normalized diffraction-caused and stray-light cross-talk noise with increasing interconnection distance for LG00 and LG01. (b) Comparison of normalized diffraction-caused and stray-light cross-talk noise with increasing interconnection distance for LG10 and LG02 modes.

Fig. 11
Fig. 11

Schematic diagram of annulus A′: Annulus A′ = is represented by the hatched area.

Fig. 12
Fig. 12

Comparison of simulated and calculated normalized stray-light cross talk noise with increasing system capacity (channels/mm2) for several modes.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ Ψ n m ( r , θ , z ) Ψ n m * ( r , θ , z ) } = K n m [ r 2 w ( z ) ] m L n ( m ) [ 2 r 2 w ( z ) 2 ] × exp [ - r 2 w ( z ) 2 - j k r 2 2 R ( z ) ] × { cos ( m θ ) sin ( m θ ) } ,
K n m = A n m N n m ,
A n m = exp { j [ ( 2 n + m + 1 ) arctan λ ( z - z s ) π w s 2 - k ( z - z s ) ] } ,
N n m = 2 w ( z ) π ( 1 + δ o m ) [ n ! ( n + m ) ! ] 1 / 2 .
w ( z ) = w s [ 1 + ( z / z R ) 2 ] 1 / 2 ,
R ( z ) = z [ 1 + ( z R / z ) 2 ] .
N = A Ψ n m ( r , θ , z 0 ) 2 r d r d θ ,
N = 0 2 π b c 4 ( 2 ) 2 m n ! [ π ( 1 + δ o m ) ] [ ( n + m ) ! ] r 2 m w 2 m + 2 cos 2 ( m θ ) × [ L n ( m ) ( 2 r 2 w 2 ) ] 2 exp ( - 2 r 2 w 2 ) r d r d θ ,
N n m = 2 2 - 2 n ( 2 w 0 ) 2 m p = 0 n q = 0 2 p ( 2 n - 2 p n - p ) × ( 2 p + 2 m 2 p - q ) ( 2 p ) ! p ! q ! ( 1 w 0 ) 2 q 2 q - m - 2 ( m + p ) ! × [ b 2 m + 2 q ( b 2 w 0 2 ) - m - q Γ ( 1 + m + q , 2 b 2 w 0 2 ) - c 2 m + 2 q ( c 2 w 0 2 ) - m - q Γ ( 1 + m + q , 2 c 2 w 0 2 ) ] .
N 00 = exp [ - 2 ( b / w 0 ) 2 ] - exp [ - 2 ( c / w 0 ) 2 ] ,
N S L n m N n m { lim q ( μ 2 - 1 ) [ ( β Δ / 2 ) 2 π ] ( q Δ ) 2 } = N n m ( π β 2 4 ) ,
N S L n m = N N M ( π β 2 4 ) α n m ,

Metrics