Abstract

To continue our earlier research on novelty filters in a system of incoherent light [ Opt. Lett. 30, 81 ( 2005)], we discuss the relationship between parameters of a bacteriorhodopsin film and the quality of a novelty filter image. For both fixed and moving velocities of the input image, differences in the novelty filter’s image as a function of thickness, lifetime of the M state, and molecular concentration are displayed, and the optimal ranges of parameters of the bR film that correspond to the entire novelty filter image and obvious gray-level differences in the image are given. The method can be used to design high-quality novelty filter images in incoherent light systems.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–1125 (1987).
    [CrossRef] [PubMed]
  2. R. S. Crudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 250, 424–426 (1988).
    [CrossRef]
  3. C. P. Zhang, G. Y. Chen, X. Wei, Z. X. Guo, J. G. Tian, X. Y. Wang, G. Y. Zhang, Q. W. Song, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81–83 (2005).
    [CrossRef] [PubMed]
  4. G. M. Cronin, A. M. Biemacki, C. Lin, H. Kong, “Image time differentiator using photorefractive two-beam coupling,” Opt. Lett. 12, 1029–1029 (1987).
  5. N. S. K. Kwong, Y. Tamita, A. Yariv, “Optical tracking filter using transient energy coupling,” J. Opt. Soc. Am. B 5, 1788–1791 (1988).
    [CrossRef]
  6. F. Vachss, L. Hesselink, “Synthesis of a holographic image velocity filter using the nonlinear photorefractive effect,” Appl. Opt. 27, 2887–2894 (1988).
    [CrossRef] [PubMed]
  7. J. E. Ford, Y. Fainman, S. H. Lee. “Time-integrating interferometry using photorefractive fanout,” Opt. Lett. 13, 856–858 (1988).
    [CrossRef] [PubMed]
  8. C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
    [CrossRef]
  9. T. Okamoto, I. Yamaguchi, S. A. Boothroyd, J. Chrostowski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt. 36, 508–511 (1997).
    [CrossRef] [PubMed]
  10. R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
    [CrossRef] [PubMed]
  11. D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Holobacterium halobium,” Nature 233, 149–152 (1971).
  12. A. Chen, S. Fan, H. Ding, C. Wu, “Extension of the velocity detection range of a tracking novelty filter that uses LiNbO3 and strontium barium niobate,” Appl. Opt. 33, 2998–3002 (1994).
    [CrossRef] [PubMed]
  13. M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
    [CrossRef]

2005 (1)

1997 (1)

1995 (1)

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

1994 (1)

1991 (1)

C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

1990 (1)

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
[CrossRef] [PubMed]

1988 (4)

1987 (2)

1971 (1)

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Holobacterium halobium,” Nature 233, 149–152 (1971).

Anderson, D. Z.

Biemacki, A. M.

Birge, R. R.

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
[CrossRef] [PubMed]

Boothroyd, S. A.

Cartwright, C. M.

C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Chen, A.

Chen, G. Y.

Chrostowski, J.

Cronin, G. M.

Crudney, R. S.

R. S. Crudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 250, 424–426 (1988).
[CrossRef]

Denz, C.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Ding, H.

Fainman, Y.

Fan, S.

Feinberg, J.

R. S. Crudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 250, 424–426 (1988).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–1125 (1987).
[CrossRef] [PubMed]

Ford, J. E.

Gillespire, W. A.

C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Guo, Z. X.

Hesselink, L.

Kong, H.

Kwong, N. S. K.

Lee, S. H.

Lin, C.

Lininger, D. M.

Oesterhelt, D.

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Holobacterium halobium,” Nature 233, 149–152 (1971).

Okamoto, T.

Pierce, R. M.

R. S. Crudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 250, 424–426 (1988).
[CrossRef]

Rauch, T.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Scoutar, C.

C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Sedlatschek, M.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Song, Q. W.

Stoeckenius, W.

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Holobacterium halobium,” Nature 233, 149–152 (1971).

Tamita, Y.

Tian, J. G.

Tschudi, T.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Vachss, F.

Wang, X. Y.

Wang, Z. Q.

C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Wei, X.

Wu, C.

Yamaguchi, I.

Yariv, A.

Zhang, C. P.

Zhang, G. Y.

Appl. Opt. (3)

Biochim. Biophys. Acta (1)

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (2)

R. S. Crudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 250, 424–426 (1988).
[CrossRef]

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Holobacterium halobium,” Nature 233, 149–152 (1971).

Opt. Commun. (2)

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

C. Scoutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photo refractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmitted Intensity of 412 nm as a function of illuminating intensity 568 nm for the illuminating blue beam (412 nm) with an intensity of 1 mW/cm2: (a) For τ = 25 s, d = 0.01 cm, and values of N of the bR film, curves 1, 2, 3, and 4 correspond to N = 0.001, 0.003, 0.005, 0.009 mol L−1, respectively. (b) For τ = 25 s and N = 0.003 mol L−1, curves 1, 2, 3, 4, and 5 are for d = 0.001, 0.005, 0.01, 0.02, 0.05 cm, respectively; For N = 0.009 mol L−1 and d = 0.02 cm, curves a, b, and c correspond to τ = 5, 10, 25 s, respectively.

Fig. 2
Fig. 2

Experimental demonstration of the novelty filter by the bR film. (a), (b) Photographs of the input pattern and the the output image, respectively.

Fig. 3
Fig. 3

Transmitted intensity of the blue light as a function of thickness of the bR film for τ = 25 s and molecular concentration of the bR film N = 0.009 mol L−1.

Fig. 4
Fig. 4

Transmitted intensity of the blue light as a function of concentration of the bR film for τ = 25 s and thickness d = 0.02 cm.

Fig. 5
Fig. 5

Contrast as a function of thickness d for a lifetime of state M of 5 s, velocity of the input image of 1 cm/s, and curves 1, 2, and 3 corresponding to N = 0.003, 0.005, 0.009 mol L−1, respectively.

Fig. 6
Fig. 6

Contrast as a function of molecular concentration for d = 0.02 cm, an input image moving velocity of 1 cm/s, τ = 5 s, and incident intensity of the yellow beam of 3 mW/cm2, and an incident intensity of the blue beam of 1 mW/cm2.

Fig. 7
Fig. 7

Contrast as a function of thickness d for several velocities of the input image.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d I 1 d z = - 2.3026 ɛ 1 N B I 1 ,
d I 2 d z = - 2.3026 ɛ 2 N M I 2 ,
N M = ( N k 1 / k ) [ 1 - exp ( - k t ) ] ,
k 1 = 23026 ϕ ɛ 1 λ 1 I 1 / N a h c ,
k 2 = 2.3026 ϕ ɛ 2 λ 2 I 2 / N a h c ,
I c = ( I max - I min ) / ( I max + I min ) ,
t = x 0 / ν .
ν max = d 2 min ( τ 1 E , τ 2 E ) ,
ν min = d min ( 2 τ 2 E - τ 1 E , a τ 2 R - τ 1 R ) ,

Metrics