Abstract

Some laser applications produce high power densities that can be dangerous to equipment and operators. We have fabricated thin-film coatings by using molecular electrostatic self-assembly to create a spectrally selective absorbing coating that is able to withstand thermal fluctuations from −20 °C to 120 °C. We made the thin-film coatings by alternating deposition of an organic dye and gold colloidal nanoparticles onto glass substrates. Nile Blue A perchlorate, with a maximum absorbance slightly above 632 nm, was chosen as the organic dye. Strong coupling between the dye molecules and the gold nanoparticles provides a redshift that increases as the film’s thickness is increased. The incorporation of the gold colloidal nanoparticles also decreases the resistivity of the film. The resistivity of the film was measured with a four-point probe and found to be ~10 Ω/cm for the two samples measured. Atomic-force microscopy was used to show that film thickness increased 2.4 nm per bilayer. The optical properties of the film were measured at the end of every 5 thermal cycles from −20 °C to 120 °C, and negligible degradation was observed after 30 cycles.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, P. F. Liao, J. G. Bergman, D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Opt. Lett. 5, 368–370 (1980).
    [CrossRef] [PubMed]
  2. Y. Liu, Y.-X. Wang, R. O. Claus, “Layer-by-layer ionic self-assembly of Au-colloids into multilayer thin-films with bulk metal conductivity,” Chem. Phys. Lett. 298, 315–319 (1998).
    [CrossRef]
  3. Y. Liu, R. O. Claus, Strong Enhancement of Optical Absorbance from Ionic Self-Assembled Multilayer Thin Films of Nanocluster Pt and Polymer Dye, J. Appl. Phys. 85, 419–424 (1999).
    [CrossRef]
  4. B. C. Sih, A. Teichert, M. O. Wolf, “Electrodeposition of oligothiophene-linked gold nanoparticle films,” Chem. Mater. 16, 2712–2718 (2004).
    [CrossRef]
  5. S. Chen, “Self-assembling of monolayer-protected gold nanoparticles,” J. Phys. Chem. B 104, 663–667 (2000).
    [CrossRef]
  6. H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of a nanosized Au particle,” J. Vac. Sci. Technol. B 17, 1906–1911 (1999).
    [CrossRef]
  7. H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
    [CrossRef]
  8. G. Decher, J. B. Schlenoff, Multilayers Thin Films—Sequential Assembly of Nanocomposite Materials (Wiley-VCH, 2003).
  9. American Society for Testing and Materials, Standard Test Method for Electrical Resistivity of Soft Magnetic Alloys, Standard A712-75 (American Society for Testing and Materials, 1991).
  10. S. Y. Park, D. Stroud, “Structure formation, melting, and optical properties of gold/DNA nanocomposites: effects of relaxation time,” Phys. Rev. B 68, 224201 (2003).
    [CrossRef]

2004 (1)

B. C. Sih, A. Teichert, M. O. Wolf, “Electrodeposition of oligothiophene-linked gold nanoparticle films,” Chem. Mater. 16, 2712–2718 (2004).
[CrossRef]

2003 (1)

S. Y. Park, D. Stroud, “Structure formation, melting, and optical properties of gold/DNA nanocomposites: effects of relaxation time,” Phys. Rev. B 68, 224201 (2003).
[CrossRef]

2002 (1)

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

2000 (1)

S. Chen, “Self-assembling of monolayer-protected gold nanoparticles,” J. Phys. Chem. B 104, 663–667 (2000).
[CrossRef]

1999 (2)

H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of a nanosized Au particle,” J. Vac. Sci. Technol. B 17, 1906–1911 (1999).
[CrossRef]

Y. Liu, R. O. Claus, Strong Enhancement of Optical Absorbance from Ionic Self-Assembled Multilayer Thin Films of Nanocluster Pt and Polymer Dye, J. Appl. Phys. 85, 419–424 (1999).
[CrossRef]

1998 (1)

Y. Liu, Y.-X. Wang, R. O. Claus, “Layer-by-layer ionic self-assembly of Au-colloids into multilayer thin-films with bulk metal conductivity,” Chem. Phys. Lett. 298, 315–319 (1998).
[CrossRef]

1980 (1)

Bergman, J. G.

Chen, S.

S. Chen, “Self-assembling of monolayer-protected gold nanoparticles,” J. Phys. Chem. B 104, 663–667 (2000).
[CrossRef]

Claus, R. O.

Y. Liu, R. O. Claus, Strong Enhancement of Optical Absorbance from Ionic Self-Assembled Multilayer Thin Films of Nanocluster Pt and Polymer Dye, J. Appl. Phys. 85, 419–424 (1999).
[CrossRef]

Y. Liu, Y.-X. Wang, R. O. Claus, “Layer-by-layer ionic self-assembly of Au-colloids into multilayer thin-films with bulk metal conductivity,” Chem. Phys. Lett. 298, 315–319 (1998).
[CrossRef]

Decher, G.

G. Decher, J. B. Schlenoff, Multilayers Thin Films—Sequential Assembly of Nanocomposite Materials (Wiley-VCH, 2003).

Du, C.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Fang, H.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Glass, A. M.

Li, H.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Li, Y.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Liao, P. F.

Liu, H.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Liu, Y.

Y. Liu, R. O. Claus, Strong Enhancement of Optical Absorbance from Ionic Self-Assembled Multilayer Thin Films of Nanocluster Pt and Polymer Dye, J. Appl. Phys. 85, 419–424 (1999).
[CrossRef]

Y. Liu, Y.-X. Wang, R. O. Claus, “Layer-by-layer ionic self-assembly of Au-colloids into multilayer thin-films with bulk metal conductivity,” Chem. Phys. Lett. 298, 315–319 (1998).
[CrossRef]

Olson, D. H.

Park, S. Y.

S. Y. Park, D. Stroud, “Structure formation, melting, and optical properties of gold/DNA nanocomposites: effects of relaxation time,” Phys. Rev. B 68, 224201 (2003).
[CrossRef]

Qu, S.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Schlenoff, J. B.

G. Decher, J. B. Schlenoff, Multilayers Thin Films—Sequential Assembly of Nanocomposite Materials (Wiley-VCH, 2003).

Sih, B. C.

B. C. Sih, A. Teichert, M. O. Wolf, “Electrodeposition of oligothiophene-linked gold nanoparticle films,” Chem. Mater. 16, 2712–2718 (2004).
[CrossRef]

Song, Y.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Stroud, D.

S. Y. Park, D. Stroud, “Structure formation, melting, and optical properties of gold/DNA nanocomposites: effects of relaxation time,” Phys. Rev. B 68, 224201 (2003).
[CrossRef]

Takei, H.

H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of a nanosized Au particle,” J. Vac. Sci. Technol. B 17, 1906–1911 (1999).
[CrossRef]

Teichert, A.

B. C. Sih, A. Teichert, M. O. Wolf, “Electrodeposition of oligothiophene-linked gold nanoparticle films,” Chem. Mater. 16, 2712–2718 (2004).
[CrossRef]

Wang, Y.-X.

Y. Liu, Y.-X. Wang, R. O. Claus, “Layer-by-layer ionic self-assembly of Au-colloids into multilayer thin-films with bulk metal conductivity,” Chem. Phys. Lett. 298, 315–319 (1998).
[CrossRef]

Wolf, M. O.

B. C. Sih, A. Teichert, M. O. Wolf, “Electrodeposition of oligothiophene-linked gold nanoparticle films,” Chem. Mater. 16, 2712–2718 (2004).
[CrossRef]

Zhu, D.

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

Chem. Mater. (1)

B. C. Sih, A. Teichert, M. O. Wolf, “Electrodeposition of oligothiophene-linked gold nanoparticle films,” Chem. Mater. 16, 2712–2718 (2004).
[CrossRef]

Chem. Phys. Lett. (2)

Y. Liu, Y.-X. Wang, R. O. Claus, “Layer-by-layer ionic self-assembly of Au-colloids into multilayer thin-films with bulk metal conductivity,” Chem. Phys. Lett. 298, 315–319 (1998).
[CrossRef]

H. Fang, C. Du, S. Qu, Y. Li, Y. Song, H. Li, H. Liu, D. Zhu, “Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles,” Chem. Phys. Lett. 364, 290–296 (2002).
[CrossRef]

J. Appl. Phys. (1)

Y. Liu, R. O. Claus, Strong Enhancement of Optical Absorbance from Ionic Self-Assembled Multilayer Thin Films of Nanocluster Pt and Polymer Dye, J. Appl. Phys. 85, 419–424 (1999).
[CrossRef]

J. Phys. Chem. B (1)

S. Chen, “Self-assembling of monolayer-protected gold nanoparticles,” J. Phys. Chem. B 104, 663–667 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of a nanosized Au particle,” J. Vac. Sci. Technol. B 17, 1906–1911 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

S. Y. Park, D. Stroud, “Structure formation, melting, and optical properties of gold/DNA nanocomposites: effects of relaxation time,” Phys. Rev. B 68, 224201 (2003).
[CrossRef]

Other (2)

G. Decher, J. B. Schlenoff, Multilayers Thin Films—Sequential Assembly of Nanocomposite Materials (Wiley-VCH, 2003).

American Society for Testing and Materials, Standard Test Method for Electrical Resistivity of Soft Magnetic Alloys, Standard A712-75 (American Society for Testing and Materials, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Thermal cycling process used to test the Nile Blue A perchlorate–gold film.

Fig. 2
Fig. 2

Absorbance of an unheated Nile Blue A perchlorate–gold 30 bilayer sample.

Fig. 3
Fig. 3

Maximum absorbance of a Nile Blue A perchlorate–gold film.

Fig. 4
Fig. 4

Thermal cycling effects on a Nile Blue A perchlorate–gold film (−20 ° to 120 °C).

Fig. 5
Fig. 5

Voltage versus current for a 50 bilayer Nile Blue A perchlorate–gold film.

Fig. 6
Fig. 6

Index of refraction and extinction coefficient of a Nile Blue A perchlorate–gold film.

Fig. 7
Fig. 7

Absorbance versus wavelength calculated from the extinction coefficient.

Metrics