Abstract

The overall aim of the research, part of which is outlined in this paper, was to utilize the ultrasonic consolidation (UC) process for the fabrication of smart metal structures, capable of measuring an external stimulus and responding to this stimulus by adapting its structure accordingly through embedding both active and passive functional elements. This paper presents a fundamental study of embedding methods for the fabrication of optical fibers embedded within aluminum structures. The methods considered in this paper produced embedded optical fiber specimens in which large amounts of plastic flow were observed within the matrix. The matrix material deformed around the fibers, resulting in fully embedded optical fibers capable of transmitting a bright light source and without damaging the fibers. Based on light responses, a general process window was drawn to show the range at which optical fibers can be embedded within aluminum structures using the UC process. The outcomes lay down initial investigative principles for the further development of the technology for embedding or cladding of optical fiber sensors, such as fiber Bragg grating devices, within or on metal structures: for example, the cladding of large free-form metal structures or smart “skinned” metal foam or metal honeycomb structures.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
    [CrossRef]
  2. D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
    [CrossRef]
  3. J. S. Leng, A. Asundi, “Nondestructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors,” NDT&E Intl. 35, 273–276 (2002).
    [CrossRef]
  4. C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
    [CrossRef]
  5. I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
    [CrossRef]
  6. J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
    [CrossRef]
  7. K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
    [CrossRef]
  8. C. Y. Kong, R. C. Soar, P. M. Dickens, “Ultrasonic consolidation technique for embedding SMA fibers within aluminum matrices,” Compos. Struct. 66, 421–427 (2004).
    [CrossRef]
  9. C. Y. Kong, R. C. Soar, P. M. Dickens, “A model for weld strength in ultrasonic consolidated components,” Proc. IMechE Part C 219, 83–92 (2005).
    [CrossRef]
  10. B. Langenecker, “Effects of ultrasound on deformation characteristics of metals,” IEEE Trans. Sonics Ultrason. 13s, 1–8 (1966).
  11. Ø. Bremnes, B. Carreño-Morelli, G. Gremaud, “Influence of the interaction between dislocations and mobile point defects on the damping spectrum of aluminum,” J. Alloys Compd. 310, 62–67 (2000).
    [CrossRef]
  12. C. Y. Kong, R. C. Soar, P. M. Dickens, “Optimum process parameters for ultrasonic consolidation of 3003 aluminum,” J. Mater. Process. Technol. 146, 181–187 (2004).
    [CrossRef]
  13. C. E. Winsper, D. H. Sansame, “The influence of oscillatory energy on the stress during plastic deformation,” J. Inst. Met. 96, 353–357 (1968).
  14. G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 1,” Metal Forming 37, 234–237 (1970).
  15. G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 2,” Metal Forming 37, 254–261 (1970).
  16. A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
    [CrossRef]
  17. V. K. Astashev, V. I. Bibitsky, “Ultrasonic cutting as a nonlinear (vibro-impact) process,” Ultrasonics 36, 89–96 (1998).
    [CrossRef]

2005 (1)

C. Y. Kong, R. C. Soar, P. M. Dickens, “A model for weld strength in ultrasonic consolidated components,” Proc. IMechE Part C 219, 83–92 (2005).
[CrossRef]

2004 (2)

C. Y. Kong, R. C. Soar, P. M. Dickens, “Optimum process parameters for ultrasonic consolidation of 3003 aluminum,” J. Mater. Process. Technol. 146, 181–187 (2004).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Ultrasonic consolidation technique for embedding SMA fibers within aluminum matrices,” Compos. Struct. 66, 421–427 (2004).
[CrossRef]

2002 (1)

J. S. Leng, A. Asundi, “Nondestructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors,” NDT&E Intl. 35, 273–276 (2002).
[CrossRef]

2001 (2)

D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
[CrossRef]

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

2000 (4)

I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
[CrossRef]

J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
[CrossRef]

D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
[CrossRef]

Ø. Bremnes, B. Carreño-Morelli, G. Gremaud, “Influence of the interaction between dislocations and mobile point defects on the damping spectrum of aluminum,” J. Alloys Compd. 310, 62–67 (2000).
[CrossRef]

1998 (2)

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

V. K. Astashev, V. I. Bibitsky, “Ultrasonic cutting as a nonlinear (vibro-impact) process,” Ultrasonics 36, 89–96 (1998).
[CrossRef]

1975 (1)

A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
[CrossRef]

1970 (2)

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 1,” Metal Forming 37, 234–237 (1970).

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 2,” Metal Forming 37, 254–261 (1970).

1968 (1)

C. E. Winsper, D. H. Sansame, “The influence of oscillatory energy on the stress during plastic deformation,” J. Inst. Met. 96, 353–357 (1968).

1966 (1)

B. Langenecker, “Effects of ultrasound on deformation characteristics of metals,” IEEE Trans. Sonics Ultrason. 13s, 1–8 (1966).

Astashev, V. K.

V. K. Astashev, V. I. Bibitsky, “Ultrasonic cutting as a nonlinear (vibro-impact) process,” Ultrasonics 36, 89–96 (1998).
[CrossRef]

Asundi, A.

J. S. Leng, A. Asundi, “Nondestructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors,” NDT&E Intl. 35, 273–276 (2002).
[CrossRef]

Bates, D.

D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
[CrossRef]

Bibitsky, V. I.

V. K. Astashev, V. I. Bibitsky, “Ultrasonic cutting as a nonlinear (vibro-impact) process,” Ultrasonics 36, 89–96 (1998).
[CrossRef]

Bremnes, Ø.

Ø. Bremnes, B. Carreño-Morelli, G. Gremaud, “Influence of the interaction between dislocations and mobile point defects on the damping spectrum of aluminum,” J. Alloys Compd. 310, 62–67 (2000).
[CrossRef]

Brooks, D.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Cantwell, W. J.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Carreño-Morelli, B.

Ø. Bremnes, B. Carreño-Morelli, G. Gremaud, “Influence of the interaction between dislocations and mobile point defects on the damping spectrum of aluminum,” J. Alloys Compd. 310, 62–67 (2000).
[CrossRef]

Chalker, P. R.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Crosby, P. A.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Dawson, G. R.

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 2,” Metal Forming 37, 254–261 (1970).

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 1,” Metal Forming 37, 234–237 (1970).

Dickens, P. M.

C. Y. Kong, R. C. Soar, P. M. Dickens, “A model for weld strength in ultrasonic consolidated components,” Proc. IMechE Part C 219, 83–92 (2005).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Optimum process parameters for ultrasonic consolidation of 3003 aluminum,” J. Mater. Process. Technol. 146, 181–187 (2004).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Ultrasonic consolidation technique for embedding SMA fibers within aluminum matrices,” Compos. Struct. 66, 421–427 (2004).
[CrossRef]

Doyle, C.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Eaves, A. E.

A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
[CrossRef]

Fernando, G. F.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Galea, S.

I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
[CrossRef]

Gremaud, G.

Ø. Bremnes, B. Carreño-Morelli, G. Gremaud, “Influence of the interaction between dislocations and mobile point defects on the damping spectrum of aluminum,” J. Alloys Compd. 310, 62–67 (2000).
[CrossRef]

Hayes, S.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Hewitt, J.

D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
[CrossRef]

Hong, C.

J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
[CrossRef]

Jones, R.

I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
[CrossRef]

Kang, H.

J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
[CrossRef]

Kenny, R.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Kong, C. Y.

C. Y. Kong, R. C. Soar, P. M. Dickens, “A model for weld strength in ultrasonic consolidated components,” Proc. IMechE Part C 219, 83–92 (2005).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Optimum process parameters for ultrasonic consolidation of 3003 aluminum,” J. Mater. Process. Technol. 146, 181–187 (2004).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Ultrasonic consolidation technique for embedding SMA fibers within aluminum matrices,” Compos. Struct. 66, 421–427 (2004).
[CrossRef]

Kuang, K. S. C.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Kwon, I. B.

D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
[CrossRef]

Langenecker, B.

B. Langenecker, “Effects of ultrasound on deformation characteristics of metals,” IEEE Trans. Sonics Ultrason. 13s, 1–8 (1966).

Lee, D. C.

D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
[CrossRef]

Lee, J. J.

D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
[CrossRef]

Leng, J. S.

J. S. Leng, A. Asundi, “Nondestructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors,” NDT&E Intl. 35, 273–276 (2002).
[CrossRef]

Liu, T.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Lu, D.

D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
[CrossRef]

Martin, A.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Mashall, I. H.

I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
[CrossRef]

McKenzie, I.

I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
[CrossRef]

Park, J.

J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
[CrossRef]

Powell, G. R.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Ryu, C.

J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
[CrossRef]

Sansame, D. H.

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 1,” Metal Forming 37, 234–237 (1970).

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 2,” Metal Forming 37, 254–261 (1970).

C. E. Winsper, D. H. Sansame, “The influence of oscillatory energy on the stress during plastic deformation,” J. Inst. Met. 96, 353–357 (1968).

Sansome, D. H.

A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
[CrossRef]

Seo, D. C.

D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
[CrossRef]

Smith, A. W.

A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
[CrossRef]

Smith, G.

D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
[CrossRef]

Soar, R. C.

C. Y. Kong, R. C. Soar, P. M. Dickens, “A model for weld strength in ultrasonic consolidated components,” Proc. IMechE Part C 219, 83–92 (2005).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Optimum process parameters for ultrasonic consolidation of 3003 aluminum,” J. Mater. Process. Technol. 146, 181–187 (2004).
[CrossRef]

C. Y. Kong, R. C. Soar, P. M. Dickens, “Ultrasonic consolidation technique for embedding SMA fibers within aluminum matrices,” Compos. Struct. 66, 421–427 (2004).
[CrossRef]

Waterhouse, W. J.

A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
[CrossRef]

Whelan, M. P.

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Winsper, C. E.

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 2,” Metal Forming 37, 254–261 (1970).

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 1,” Metal Forming 37, 234–237 (1970).

C. E. Winsper, D. H. Sansame, “The influence of oscillatory energy on the stress during plastic deformation,” J. Inst. Met. 96, 353–357 (1968).

Wu, M.

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

Compos. Sci. Technol. (1)

K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[CrossRef]

Compos. Struct. (2)

C. Y. Kong, R. C. Soar, P. M. Dickens, “Ultrasonic consolidation technique for embedding SMA fibers within aluminum matrices,” Compos. Struct. 66, 421–427 (2004).
[CrossRef]

I. McKenzie, R. Jones, I. H. Mashall, S. Galea, “Optical fiber sensors for health monitoring of bonded repair systems,” Compos. Struct. 50, 405–416 (2000).
[CrossRef]

Composites Part B: Eng. (1)

D. Bates, G. Smith, D. Lu, J. Hewitt, “Rapid thermal nondestructive testing of aircraft components,” Composites Part B: Eng. 31, 175–185 (2000).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

B. Langenecker, “Effects of ultrasound on deformation characteristics of metals,” IEEE Trans. Sonics Ultrason. 13s, 1–8 (1966).

J. Alloys Compd. (1)

Ø. Bremnes, B. Carreño-Morelli, G. Gremaud, “Influence of the interaction between dislocations and mobile point defects on the damping spectrum of aluminum,” J. Alloys Compd. 310, 62–67 (2000).
[CrossRef]

J. Compos. Mater. (1)

J. Park, C. Ryu, H. Kang, C. Hong, “Detection of buckling and crack growth in the delaminated composites using fiber optic sensor,” J. Compos. Mater. 34, 1602–1623 (2000).
[CrossRef]

J. Inst. Met. (1)

C. E. Winsper, D. H. Sansame, “The influence of oscillatory energy on the stress during plastic deformation,” J. Inst. Met. 96, 353–357 (1968).

J. Mater. Process. Technol. (1)

C. Y. Kong, R. C. Soar, P. M. Dickens, “Optimum process parameters for ultrasonic consolidation of 3003 aluminum,” J. Mater. Process. Technol. 146, 181–187 (2004).
[CrossRef]

Metal Forming (2)

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 1,” Metal Forming 37, 234–237 (1970).

G. R. Dawson, C. E. Winsper, D. H. Sansame, “Application of high- and low-frequency oscillations to the plastic deformation of metals- 2,” Metal Forming 37, 254–261 (1970).

NDT&E Intl. (1)

J. S. Leng, A. Asundi, “Nondestructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors,” NDT&E Intl. 35, 273–276 (2002).
[CrossRef]

Proc. IMechE Part C (1)

C. Y. Kong, R. C. Soar, P. M. Dickens, “A model for weld strength in ultrasonic consolidated components,” Proc. IMechE Part C 219, 83–92 (2005).
[CrossRef]

Smart Mater. Struct. (2)

C. Doyle, A. Martin, T. Liu, M. Wu, S. Hayes, P. A. Crosby, G. R. Powell, D. Brooks, G. F. Fernando, “In situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors,” Smart Mater. Struct. 7, 145–158 (1998).
[CrossRef]

D. C. Lee, J. J. Lee, I. B. Kwon, D. C. Seo, “Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors,” Smart Mater. Struct. 10, 285–292 (2001).
[CrossRef]

Ultrasonics (2)

A. E. Eaves, A. W. Smith, W. J. Waterhouse, D. H. Sansome, “Review of the application of ultrasonic vibrations to deforming metals,” Ultrasonics 13, 162–170 (1975).
[CrossRef]

V. K. Astashev, V. I. Bibitsky, “Ultrasonic cutting as a nonlinear (vibro-impact) process,” Ultrasonics 36, 89–96 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics