Abstract

A method for the simultaneous retrieval of gas concentrations and an extinction spectrum of aerosols and polar stratospheric clouds from infrared transmission spectra observed in the solar occultation geometry is described. It is particularly suited to measurements by Fourier-transform spectrometers with relatively low spectral resolution (0.1–1 cm−1). The method does not require a priori assumptions on aerosol properties; it utilizes only the fact that the wave-number dependence of aerosol extinction is much weaker than that of gas absorption. In this method, an aerosol extinction spectrum is approximated by a straight line within a relatively wide spectral range defined as mediumwindow.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
    [CrossRef]
  2. C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
    [CrossRef]
  3. M. C. Abrams, M. R. Gunson, A. Y. Chang, C. P. Rinsland, R. Zander, “Remote sensing of the Earth’s atmosphere from space with high-resolution Fourier-transform spectroscopy: development and methodology of data processing for the Atmospheric Trace Molecule Spectroscopy experiment,” Appl. Opt. 35, 2774–2751 (1996).
    [CrossRef] [PubMed]
  4. H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
    [CrossRef]
  5. N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
    [CrossRef]
  6. G. Echle, T. von Clarmann, H. Oelhaf, “A technique for retrieving mid-IR extinction coefficients of stratospheric aerosols from limb emission spectra,” in Proceedings of the Third European Workshop on Polar Stratospheric Ozone, Air Pollution Research (European Commission, Luxembourg, 1996), Vol. 56, pp. 823–826.
  7. G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb spectra,” J. Geophys. Res. 103D, 19193–19211 (1998).
    [CrossRef]
  8. A. Eldering, F. W. Irion, A. Y. Chang, M. R. Gunson, F. P. Mills, H. M. Steele, “Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology,” Appl. Opt. 40, 3082–3091 (2001).
    [CrossRef]
  9. C. D. Rodgers, Inverse Methods for Atmospheric Soundings: Theory and Practice (World Scientific, Singapore, 2000).
  10. A. Dudhia, V. L. Jay, C. D. Rodgers, “Microwindow selection for high-spectral-resolution sounders,” Appl. Opt. 41, 3665–3673 (2002).
    [CrossRef] [PubMed]
  11. C. D. Rodgers, “Information content and optimisation of high spectral resolution measurements,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Proc. SPIE2830, 136–147 (1996).
    [CrossRef]
  12. S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res.100D, 16519–16535 (1995), http://www.rtweb .
    [CrossRef]
  13. For more information on HITRAN, see http://www.hitran.com/ .
  14. J. H. Park, “Effect of interferogram smearing on atmospheric limb sounding by Fourier transform spectroscopy,” Appl. Opt. 21, 1356–1366 (1982).
    [CrossRef] [PubMed]
  15. J. H. Park, “Analysis method for Fourier transform spectroscopy,” Appl. Opt. 22, 835–849 (1983).
    [CrossRef] [PubMed]
  16. J. H. Park, “Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing,” Appl. Opt. 23, 2604–2613 (1984).
    [CrossRef] [PubMed]
  17. E. Dufour, F.-M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595–3609 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (1)

2001 (1)

1998 (1)

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb spectra,” J. Geophys. Res. 103D, 19193–19211 (1998).
[CrossRef]

1996 (1)

1994 (1)

C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
[CrossRef]

1989 (1)

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

1984 (1)

1983 (1)

1982 (1)

Abrams, M. C.

Bréon, F.-M.

Chang, A. Y.

Dudhia, A.

Dufour, E.

Echle, G.

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb spectra,” J. Geophys. Res. 103D, 19193–19211 (1998).
[CrossRef]

G. Echle, T. von Clarmann, H. Oelhaf, “A technique for retrieving mid-IR extinction coefficients of stratospheric aerosols from limb emission spectra,” in Proceedings of the Third European Workshop on Polar Stratospheric Ozone, Air Pollution Research (European Commission, Luxembourg, 1996), Vol. 56, pp. 823–826.

Eldering, A.

Farmer, C. B.

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

Gunson, M. R.

Irion, F. W.

Jay, V. L.

Kuze, A.

H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
[CrossRef]

Mills, F. P.

Nakajima, H.

H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
[CrossRef]

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

Namkumg, J. S.

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

Norton, R. H.

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

Oelhaf, H.

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb spectra,” J. Geophys. Res. 103D, 19193–19211 (1998).
[CrossRef]

G. Echle, T. von Clarmann, H. Oelhaf, “A technique for retrieving mid-IR extinction coefficients of stratospheric aerosols from limb emission spectra,” in Proceedings of the Third European Workshop on Polar Stratospheric Ozone, Air Pollution Research (European Commission, Luxembourg, 1996), Vol. 56, pp. 823–826.

Park, J. H.

Rinsland, C. P.

M. C. Abrams, M. R. Gunson, A. Y. Chang, C. P. Rinsland, R. Zander, “Remote sensing of the Earth’s atmosphere from space with high-resolution Fourier-transform spectroscopy: development and methodology of data processing for the Atmospheric Trace Molecule Spectroscopy experiment,” Appl. Opt. 35, 2774–2751 (1996).
[CrossRef] [PubMed]

C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
[CrossRef]

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

Rodgers, C. D.

A. Dudhia, V. L. Jay, C. D. Rodgers, “Microwindow selection for high-spectral-resolution sounders,” Appl. Opt. 41, 3665–3673 (2002).
[CrossRef] [PubMed]

C. D. Rodgers, Inverse Methods for Atmospheric Soundings: Theory and Practice (World Scientific, Singapore, 2000).

C. D. Rodgers, “Information content and optimisation of high spectral resolution measurements,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Proc. SPIE2830, 136–147 (1996).
[CrossRef]

Sasano, Y.

H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
[CrossRef]

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

Steele, H. M.

Sugita, T.

H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
[CrossRef]

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

Tatsuya, T.

H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
[CrossRef]

Uehara, Y.

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

Uemura, N.

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

von Clarmann, T.

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb spectra,” J. Geophys. Res. 103D, 19193–19211 (1998).
[CrossRef]

G. Echle, T. von Clarmann, H. Oelhaf, “A technique for retrieving mid-IR extinction coefficients of stratospheric aerosols from limb emission spectra,” in Proceedings of the Third European Workshop on Polar Stratospheric Ozone, Air Pollution Research (European Commission, Luxembourg, 1996), Vol. 56, pp. 823–826.

Yokota, T.

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

Yoshigahara, C.

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

Yue, G. K.

C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
[CrossRef]

Zander, R.

M. C. Abrams, M. R. Gunson, A. Y. Chang, C. P. Rinsland, R. Zander, “Remote sensing of the Earth’s atmosphere from space with high-resolution Fourier-transform spectroscopy: development and methodology of data processing for the Atmospheric Trace Molecule Spectroscopy experiment,” Appl. Opt. 35, 2774–2751 (1996).
[CrossRef] [PubMed]

C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
[CrossRef]

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

Appl. Opt. (7)

J. Geophys. Res. (2)

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb spectra,” J. Geophys. Res. 103D, 19193–19211 (1998).
[CrossRef]

C. P. Rinsland, R. Zander, J. S. Namkumg, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorptions observed by the ATMOS instrument,” J. Geophys. Res. 94D, 16303–16322 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
[CrossRef]

Other (7)

H. Nakajima, A. Kuze, T. Sugita, T. Tatsuya, Y. Sasano, “Solar-occultation FTS for inclined-orbit satellite (SOFIS): scientific requirements and current status of development,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 165–174 (2001).
[CrossRef]

N. Uemura, T. Yokota, H. Nakajima, T. Sugita, Y. Sasano, C. Yoshigahara, Y. Uehara, “A preliminary study on data processing algorithms for SOFIS,” in Optical Remote Sensing of the Atmosphere and Clouds II, Proc. SPIE4150, 174–187 (2001).
[CrossRef]

G. Echle, T. von Clarmann, H. Oelhaf, “A technique for retrieving mid-IR extinction coefficients of stratospheric aerosols from limb emission spectra,” in Proceedings of the Third European Workshop on Polar Stratospheric Ozone, Air Pollution Research (European Commission, Luxembourg, 1996), Vol. 56, pp. 823–826.

C. D. Rodgers, Inverse Methods for Atmospheric Soundings: Theory and Practice (World Scientific, Singapore, 2000).

C. D. Rodgers, “Information content and optimisation of high spectral resolution measurements,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Proc. SPIE2830, 136–147 (1996).
[CrossRef]

S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res.100D, 16519–16535 (1995), http://www.rtweb .
[CrossRef]

For more information on HITRAN, see http://www.hitran.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmittance due to the aerosol (sulfuric acid) used for the simulation for different tangent altitudes.

Fig. 2
Fig. 2

Total transmission spectrum at a tangent height of 10 km. The gray hatching shows the mediumwindow regions used in the sensitivity test.

Fig. 3
Fig. 3

Assumed profile of each gas used to generate the synthetic data. The initial profiles used in the nonlinear least-squares fitting are half of the true profiles. ppmv, parts per million by volume.

Fig. 4
Fig. 4

Retrieved CO2 profile for a single event: (a) circles are the true values and the squares show the retrieved profile, (b) the relative error of the retrieval. A value of 175 parts per million by volume (ppmv) was used as the initial values for the entire altitude range.

Fig. 5
Fig. 5

Statistical results from 30 retrieval trials with different seeds for pseudorandom numbers used to produce the random measurement noise. (a) The average of 30 trials, (b) the standard deviation of 30 trials, (c) the total error defined as [(average)2 + (standard deviation)2]1/2.

Fig. 6
Fig. 6

Upper panel shows an example of retrieved aerosol extinction coefficients in mediumwindows. Solid curve, spectrum of the true extinction coefficients at a tangent height of 10 km; horizontal bars, retrieved extinction coefficients in mediumwindows; dashed curve, continuous spectrum of the retrieved extinction coefficients calculated by cubic spline interpolation. The lower panel shows the residual spectrum. The gray hatching areas in both panels show the selected mediumwindow regions.

Fig. 7
Fig. 7

Estimated retrieval errors of individual trace gases (a figure representation of Table 1). The open circles show random errors (the standard deviations of 30 retrieval trials), and the solid circles show systematic biases (the averages of 30 retrieval trials).

Tables (1)

Tables Icon

Table 1 Estimated Retrieval Errors in Units of Percent

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

δ I j = 1 2 ln S j - 1 - 1 2 ln S j ,
S j = t = 1 m σ t ( x ) 2 ,
I j = - t = 1 m ln [ σ t ( x ) ] ,
S j = S j - 1 [ I - a j a j T S j - 1 a j T S j - 1 a j + σ j ( y ) 2 ] ,
δ I j = 1 2 ln [ 1 + a j T S j - 1 a j σ j ( y ) 2 ] ,
S k - 1 = S k - 1 - 1 + A k T W k A k ,             S k = ( S k - 1 ) - 1 ,
S k = S k - 1 [ I - A k T ( A k S k - 1 A k T + W k - 1 ) - 1 A k S k - 1 ] ,
S k - 1 = S k - 1 - 1 + 1 σ k ( y ) 2 A k T A k ,             S k = ( S k - 1 ) ,
S k = S k - 1 { I - A k T [ A k S k - 1 A k T + σ k ( y ) 2 I ] - 1 A k S k - 1 } .
y j = ( c 0 + c 1 j ) + a j T x + j = l j T c + a j T x + j ,             j = 1 , , n ,
y = L c + A x + e ,
y = A ˜ x ˜ + e ,
S ˜ k - 1 = [ 0 0 0 S k - 1 - 1 ] + 1 σ k ( y ) 2 A ˜ k T A ˜ k ,
S k - 1 = S k - 1 - 1 + 1 σ k ( y ) 2 A k T [ I - L ( L T L ) - 1 L T ] A k .
[ I - L ( L T L ) - 1 L T ] i j = { δ i j - 1 n if slope [ c 1 in Eq . ( 8 a ) ] = 0 δ i j - 1 n - 12 n ( n 2 - 1 ) ( i - n + 1 2 ) ( j - n + 1 2 ) if slope 0 ,
σ k , i ( x ) = S k { 1 σ k ( y ) 2 A k T [ I - L ( L T L ) - 1 L T ] σ k , i ( y ) + S - 1 - 1 σ k - 1 , i ( x ) } ,
S k , i ( sys ) = E { [ σ k , i ( x ) ) ( σ k , i ( x ) ] } ,
S k ( tot ) = S k + i S k , i ( sys ) ,

Metrics