Abstract

The analytical development and underlying hypothesis of a three-band algorithm for estimating chlorophyll-a concentration ([Chla]) in turbid productive waters are presented. The sensitivity of the algorithm to the spectral location of the bands used is analyzed. A large set of experimental observations ([Chla] varied between 4 and 217 mg m−3 and turbidity between 2 and 78 nephelometric turbidity units) was used to calibrate and validate the algorithm. It was found that the variability of the chlorophyll-a fluorescence quantum yield and of the chlorophyll-a specific absorption coefficient can reduce considerably the accuracy of remote predictions of [Chla]. Instead of parameterizing these interferences, their effects were minimized by tuning the spectral regions used in the algorithm. This allowed us to predict [Chla] with a relative root-mean-square error of less than 30%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Gitelson, K. Y. Kondratyev, “Optical models of mesotrophic and eutrophic water bodies,” Int. J. Remote Sens. 12, 373–385 (1991).
    [CrossRef]
  2. A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
    [CrossRef]
  3. A. G. Dekker, “Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. thesis (Vrije Universiteit, Amsterdam, The Netherlands, 1993).
  4. H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002).
    [CrossRef]
  5. H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1132 (1999).
    [CrossRef]
  6. H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
    [CrossRef]
  7. K. G. Ruddick, H. J. Gons, M. Rijkeboer, G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
    [CrossRef]
  8. A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
    [CrossRef]
  9. J. F. R. Gower, “Observations of in-situ fluorescence of chlorophyll-a in Saanich Intel,” Boundary-Layer Meteorol. 18, 235–245 (1980).
    [CrossRef]
  10. R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll α fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977).
    [CrossRef]
  11. J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
    [CrossRef]
  12. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
    [CrossRef]
  13. M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
    [CrossRef]
  14. D. A. Kiefer, R. A. Reynolds, “Advances in understanding phytoplankton fluorescence and photosynthesis,” in Primary Productivity and Biogeochemical Cycles in the Sea,P. G. Falkowsky, A. D. Woodhead, eds. (Plenum, New York, 1992).
    [CrossRef]
  15. G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003).
    [CrossRef]
  16. A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003).
    [CrossRef] [PubMed]
  17. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
    [CrossRef] [PubMed]
  18. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
    [CrossRef]
  19. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
    [CrossRef]
  20. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular-scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef] [PubMed]
  21. A. Morel, B. Gentili, “Diffuse-reflectance of oceanic waters. 2. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  22. H. Loisel, A. Morel, “Nonisotropy of the upward radiance field in typical coastal (case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001).
    [CrossRef]
  23. F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003).
    [CrossRef]
  24. T. Heege, “Flugzeuggestützte Fernerkundung von Wasserinhaltsstoffen am Bodensee,” Ph.D. thesis (DLR-Forschungsbericht, Wessling, Germany, 2002).
  25. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  26. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
    [CrossRef]
  27. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, UK, 1994).
    [CrossRef]
  28. M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
    [CrossRef]
  29. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  30. N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr. 39, 1985–1992 (1994).
    [CrossRef]
  31. American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).
  32. S. Tassan, G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
    [CrossRef]
  33. G. S. Fargion, J. L. Mueller, “Ocean optics protocols for SeaWiFS validation, revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000).
  34. G. B. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)” in Ocean Optics X (SPIE, Bellingham, Wash., 1990).
    [CrossRef]
  35. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  36. A. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13, 3367–3373 (1992).
    [CrossRef]
  37. A. Vasilkov, O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology 22, 697–701 (1982).
  38. P. Pringsheim, Fluorescence and Phosphorescence (Inter-science, New York, (1949).
  39. P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell, Malden, Massachusetts, 1997).
  40. K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997).
    [CrossRef]
  41. S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
    [CrossRef]
  42. D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002).
    [CrossRef]
  43. H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
    [CrossRef]
  44. T. Fujiki, S. Taguchi, “Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
    [CrossRef]
  45. H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, Proc. SPIE2258, 174–183 (1994).
    [CrossRef]
  46. V. E. Brando, A. G. Dekker, “The fluorescence term on the observed 690–710 nm reflectance peak in eutrophic turbid (inland) waters: myth or reality?” in Ocean Optics XVI, (Office of Naval Research, Santa Fe, New Mexico, 2002).
  47. C. S. Roesler, M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. [Oceans] 100, 13279–13294 (1995).
    [CrossRef]
  48. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
    [CrossRef]
  49. D. Pierson, N. Strömbäck, “A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes,” Geophysica 36, 177–202 (2000).
  50. K. Oki, Y. Yasuoka, “Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface,” Appl. Opt. 41, 6463–6469 (2002).
    [CrossRef] [PubMed]
  51. E. F. Hoge, C. W. S. N. R. Wright, “Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination,” Appl. Opt. 26, 2082–2094 (1987).
    [CrossRef] [PubMed]
  52. K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
    [CrossRef] [PubMed]
  53. J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
    [CrossRef] [PubMed]
  54. K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003).
    [CrossRef]
  55. P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
    [CrossRef]

2003 (5)

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003).
[CrossRef]

A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003).
[CrossRef] [PubMed]

F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003).
[CrossRef]

S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[CrossRef]

K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003).
[CrossRef]

2002 (7)

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

K. Oki, Y. Yasuoka, “Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface,” Appl. Opt. 41, 6463–6469 (2002).
[CrossRef] [PubMed]

D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002).
[CrossRef]

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

T. Fujiki, S. Taguchi, “Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002).
[CrossRef]

2001 (4)

K. G. Ruddick, H. J. Gons, M. Rijkeboer, G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
[CrossRef]

H. Loisel, A. Morel, “Nonisotropy of the upward radiance field in typical coastal (case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001).
[CrossRef]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

2000 (2)

D. Pierson, N. Strömbäck, “A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes,” Geophysica 36, 177–202 (2000).

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

1999 (2)

J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1132 (1999).
[CrossRef]

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

1997 (1)

K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997).
[CrossRef]

1996 (1)

M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

1995 (3)

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. [Oceans] 100, 13279–13294 (1995).
[CrossRef]

S. Tassan, G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

1994 (3)

N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr. 39, 1985–1992 (1994).
[CrossRef]

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
[CrossRef] [PubMed]

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

1993 (2)

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

A. Morel, B. Gentili, “Diffuse-reflectance of oceanic waters. 2. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

1992 (1)

A. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13, 3367–3373 (1992).
[CrossRef]

1991 (2)

1989 (1)

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

1987 (1)

1985 (1)

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

1982 (1)

A. Vasilkov, O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology 22, 697–701 (1982).

1981 (1)

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[CrossRef]

1980 (1)

J. F. R. Gower, “Observations of in-situ fluorescence of chlorophyll-a in Saanich Intel,” Boundary-Layer Meteorol. 18, 235–245 (1980).
[CrossRef]

1977 (2)

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll α fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997).
[CrossRef]

Ammenberg, P.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

Association, Health

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

Association, Works

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

Babin, F.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Babin, M.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
[CrossRef]

Bagheri, S.

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Berman, T.

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

Berthon, J. F.

F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003).
[CrossRef]

Borstad, G. A.

J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

Brando, V. E.

V. E. Brando, A. G. Dekker, “The fluorescence term on the observed 690–710 nm reflectance peak in eutrophic turbid (inland) waters: myth or reality?” in Ocean Optics XVI, (Office of Naval Research, Santa Fe, New Mexico, 2002).

Bricaud, A.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Bruyant, F.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Carder, K. L.

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
[CrossRef] [PubMed]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Claustre, H.

D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002).
[CrossRef]

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
[CrossRef]

Dall’Olmo, G.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003).
[CrossRef]

Davis, C. O.

Dekker, A. G.

A. G. Dekker, “Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. thesis (Vrije Universiteit, Amsterdam, The Netherlands, 1993).

V. E. Brando, A. G. Dekker, “The fluorescence term on the observed 690–710 nm reflectance peak in eutrophic turbid (inland) waters: myth or reality?” in Ocean Optics XVI, (Office of Naval Research, Santa Fe, New Mexico, 2002).

Doerffer, R.

J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Eloheimo, K.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Falkowski, P. G.

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell, Malden, Massachusetts, 1997).

Fargion, G. S.

G. S. Fargion, J. L. Mueller, “Ocean optics protocols for SeaWiFS validation, revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000).

Federation, Control

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

Ferrari, G. M.

S. Tassan, G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

Flink, P.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

Fujiki, T.

T. Fujiki, S. Taguchi, “Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

Garbuzov, G.

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Gentili, B.

M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

A. Morel, B. Gentili, “Diffuse-reflectance of oceanic waters. 2. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular-scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

Gitelson, A. A.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003).
[CrossRef]

A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003).
[CrossRef] [PubMed]

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

A. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13, 3367–3373 (1992).
[CrossRef]

A. A. Gitelson, K. Y. Kondratyev, “Optical models of mesotrophic and eutrophic water bodies,” Int. J. Remote Sens. 12, 373–385 (1991).
[CrossRef]

Gons, H. J.

H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002).
[CrossRef]

K. G. Ruddick, H. J. Gons, M. Rijkeboer, G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1132 (1999).
[CrossRef]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Gower, J. F. R.

J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

J. F. R. Gower, “Observations of in-situ fluorescence of chlorophyll-a in Saanich Intel,” Boundary-Layer Meteorol. 18, 235–245 (1980).
[CrossRef]

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll α fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977).
[CrossRef]

Gritz, Y.

A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003).
[CrossRef] [PubMed]

Guillou, L.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Hallikainen, M.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

Hannonen, T.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Hawes, S. K.

Heege, T.

T. Heege, “Flugzeuggestützte Fernerkundung von Wasserinhaltsstoffen am Bodensee,” Ph.D. thesis (DLR-Forschungsbericht, Wessling, Germany, 2002).

Hoge, E. F.

Kaiser, A.

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Kallio, K.

K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Karnieli, A.

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Kiefer, D. A.

D. A. Kiefer, R. A. Reynolds, “Advances in understanding phytoplankton fluorescence and photosynthesis,” in Primary Productivity and Biogeochemical Cycles in the Sea,P. G. Falkowsky, A. D. Woodhead, eds. (Plenum, New York, 1992).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, UK, 1994).
[CrossRef]

Kondratyev, K. Y.

A. A. Gitelson, K. Y. Kondratyev, “Optical models of mesotrophic and eutrophic water bodies,” Int. J. Remote Sens. 12, 373–385 (1991).
[CrossRef]

Kopelevich, O.

A. Vasilkov, O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology 22, 697–701 (1982).

Koponen, S.

K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Kutser, T.

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Le Gall, F.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Lee, Z. P.

Lindell, T.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

Lohrenz, S. E.

S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[CrossRef]

Loisel, H.

H. Loisel, A. Morel, “Nonisotropy of the upward radiance field in typical coastal (case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001).
[CrossRef]

Marie, D.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Mayo, M.

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

Melin, F.

F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003).
[CrossRef]

Merzlyak, M. N.

A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003).
[CrossRef] [PubMed]

Mitchell, G. B.

G. B. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)” in Ocean Optics X (SPIE, Bellingham, Wash., 1990).
[CrossRef]

Mittenzwey, K.-H.

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

Morel, A.

H. Loisel, A. Morel, “Nonisotropy of the upward radiance field in typical coastal (case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
[CrossRef]

A. Morel, B. Gentili, “Diffuse-reflectance of oceanic waters. 2. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular-scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Mueller, J. L.

G. S. Fargion, J. L. Mueller, “Ocean optics protocols for SeaWiFS validation, revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000).

Neville, R. A.

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll α fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977).
[CrossRef]

Oki, K.

Parparov, A.

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

Partensky, F.

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Peacock, T. G.

Perry, M. J.

C. S. Roesler, M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. [Oceans] 100, 13279–13294 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Pierson, D.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

D. Pierson, N. Strömbäck, “A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes,” Geophysica 36, 177–202 (2000).

Pollution, Water

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Pringsheim, P.

P. Pringsheim, Fluorescence and Phosphorescence (Inter-science, New York, (1949).

Public, American

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

Pulliainen, J.

K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Pyh, T.

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Raven, J. A.

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell, Malden, Massachusetts, 1997).

Reynolds, R. A.

D. A. Kiefer, R. A. Reynolds, “Advances in understanding phytoplankton fluorescence and photosynthesis,” in Primary Productivity and Biogeochemical Cycles in the Sea,P. G. Falkowsky, A. D. Woodhead, eds. (Plenum, New York, 1992).
[CrossRef]

Rijkeboer, M.

H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002).
[CrossRef]

K. G. Ruddick, H. J. Gons, M. Rijkeboer, G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

Roesler, C. S.

C. S. Roesler, M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. [Oceans] 100, 13279–13294 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Ruddick, K. G.

H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002).
[CrossRef]

K. G. Ruddick, H. J. Gons, M. Rijkeboer, G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

Rundquist, D. C.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003).
[CrossRef]

Sciandra, A.

D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002).
[CrossRef]

Servomaa, H.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Steward, R. G.

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
[CrossRef] [PubMed]

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

Stramski, D.

D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002).
[CrossRef]

M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

Strömbäck, N.

D. Pierson, N. Strömbäck, “A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes,” Geophysica 36, 177–202 (2000).

Strombeck, N.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

Szilagyi, F.

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Taguchi, S.

T. Fujiki, S. Taguchi, “Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

Tassan, S.

S. Tassan, G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

Tauriainen, S.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

Tilstone, G.

Tuel, M.

S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[CrossRef]

Vasilkov, A.

A. Vasilkov, O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology 22, 697–701 (1982).

Veps, J.

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

Water, American

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

Weidemann, A. D.

S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[CrossRef]

Welschmeyer, N. A.

N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr. 39, 1985–1992 (1994).
[CrossRef]

Wright, C. W. S. N. R.

Yacobi, Y. Z.

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

Yasuoka, Y.

Zibordi, G.

F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003).
[CrossRef]

Appl. Opt. (6)

Boundary-Layer Meteorol. (1)

J. F. R. Gower, “Observations of in-situ fluorescence of chlorophyll-a in Saanich Intel,” Boundary-Layer Meteorol. 18, 235–245 (1980).
[CrossRef]

Environ. Sci. Technol. (2)

H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1132 (1999).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

Geophys. Res. Lett. (1)

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30, 1938, doi: (2003).
[CrossRef]

Geophysica (1)

D. Pierson, N. Strömbäck, “A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes,” Geophysica 36, 177–202 (2000).

IEEE Trans. Geosci. Remote Sens. (1)

F. Melin, G. Zibordi, J. F. Berthon, “Assessment of SeaWiFS atmospheric and marine products for the Northern Adriatic Sea,” IEEE Trans. Geosci. Remote Sens. 41, 548–558 (2003).
[CrossRef]

Int. J. Remote Sens. (8)

H. Loisel, A. Morel, “Nonisotropy of the upward radiance field in typical coastal (case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001).
[CrossRef]

A. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13, 3367–3373 (1992).
[CrossRef]

J. F. R. Gower, R. Doerffer, G. A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

M. Babin, A. Morel, B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

A. A. Gitelson, K. Y. Kondratyev, “Optical models of mesotrophic and eutrophic water bodies,” Int. J. Remote Sens. 12, 373–385 (1991).
[CrossRef]

A. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real time monitoring of inland water quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

K. Kallio, S. Koponen, J. Pulliainen, “Feasibility of airborne imaging spectrometry for lake monitoring: a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes,” Int. J. Remote Sens. 24, 3771–3790 (2003).
[CrossRef]

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, N. Strombeck, “Bio-optical modelling combined with remote sensing to assess water quality,” Int. J. Remote Sens. 23, 1621–1638 (2002).
[CrossRef]

J. Geophys. Res. (2)

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll α fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

J. Geophys. Res. [Oceans] (4)

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. [Oceans] 100, 13321–13332 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. [Oceans] 100, 13279–13294 (1995).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans] 103, 31033–31044 (1998).
[CrossRef]

K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific,” J. Geophys. Res. [Oceans] 102, 12413–12423 (1997).
[CrossRef]

J. Plankton Res. (4)

S. E. Lohrenz, A. D. Weidemann, M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[CrossRef]

H. J. Gons, M. Rijkeboer, K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002).
[CrossRef]

T. Fujiki, S. Taguchi, “Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

A. A. Gitelson, M. Mayo, Y. Z. Yacobi, A. Parparov, T. Berman, “The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret,” J. Plankton Res. 16, 993–1002 (1994).
[CrossRef]

J. Plant Physiol. (1)

A. A. Gitelson, Y. Gritz, M. N. Merzlyak, “Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol. 160, 271–282 (2003).
[CrossRef] [PubMed]

Limnol. Oceanogr. (9)

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr. 39, 1985–1992 (1994).
[CrossRef]

S. Tassan, G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[CrossRef]

M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

D. Stramski, A. Sciandra, H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira Pseudonana,” Limnol. Oceanogr. 47, 392–403 (2002).
[CrossRef]

H. Claustre, A. Bricaud, M. Babin, F. Babin, F. Bruyant, L. Guillou, F. Le Gall, D. Marie, F. Partensky, “Diel variations in prochlorococcus optical properties,” Limnol. Oceanogr. 47, 1637–1647 (2002).
[CrossRef]

Oceanology (1)

A. Vasilkov, O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology 22, 697–701 (1982).

Sci. Total Environ. (2)

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, T. Pyh, “Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons,” Sci. Total Environ. 268, 59–77 (2001).
[CrossRef] [PubMed]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, M. Hallikainen, “A semi-operative approach to lake water quality retrieval from remote sensing data,” Sci. Total Environ. 268, 79–93 (2001).
[CrossRef] [PubMed]

Other (12)

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, Proc. SPIE2258, 174–183 (1994).
[CrossRef]

V. E. Brando, A. G. Dekker, “The fluorescence term on the observed 690–710 nm reflectance peak in eutrophic turbid (inland) waters: myth or reality?” in Ocean Optics XVI, (Office of Naval Research, Santa Fe, New Mexico, 2002).

P. Pringsheim, Fluorescence and Phosphorescence (Inter-science, New York, (1949).

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell, Malden, Massachusetts, 1997).

G. S. Fargion, J. L. Mueller, “Ocean optics protocols for SeaWiFS validation, revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000).

G. B. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)” in Ocean Optics X (SPIE, Bellingham, Wash., 1990).
[CrossRef]

American Public, Health Association, American Water, Works Association, Water Pollution, Control Federation, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, D.C., 1989).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, UK, 1994).
[CrossRef]

T. Heege, “Flugzeuggestützte Fernerkundung von Wasserinhaltsstoffen am Bodensee,” Ph.D. thesis (DLR-Forschungsbericht, Wessling, Germany, 2002).

D. A. Kiefer, R. A. Reynolds, “Advances in understanding phytoplankton fluorescence and photosynthesis,” in Primary Productivity and Biogeochemical Cycles in the Sea,P. G. Falkowsky, A. D. Woodhead, eds. (Plenum, New York, 1992).
[CrossRef]

A. G. Dekker, “Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. thesis (Vrije Universiteit, Amsterdam, The Netherlands, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Relationships between [Chla] and other “optically active” constituents indicating that the lakes studied belong to case 2 waters. Determination coefficients for linear relationships are presented in each plot.

Fig. 2
Fig. 2

Remote-sensing reflectance spectra of the water bodies studied. Some examples are highlighted: curve “Low,” [Chla] = 11 mg m−3, TSS = 5 mg L−1; curve “High,” [Chla] = 89 mg m−3, TSS = 21 mg L−1; curve “Moderate,” [Chla] = 24 mg m−3, TSS = 55 mg L−1.

Fig. 3
Fig. 3

Frequency distribution of the position of the reflectance maximum around 700 nm.

Fig. 4
Fig. 4

Chla specific absorption coefficient at 678 nm as a function of [Chla].

Fig. 5
Fig. 5

STE of estimate resulting from regressing different model versions versus [Chla] measured analytically: (a) [ R rs - 1 ( λ 1 ) - R rs - 1 ( 715 ) ] R rs ( 750 ) letting vary λ1, (b) [ R rs - 1 ( 671 ) - R rs - 1 ( λ 2 ) ] × R rs ( 750 ) letting vary λ2, and (c) [ R rs - 1 ( 671 ) - R rs - 1 ( 710 ) ] × R rs ( λ 3 ) letting vary λ3. Boxes indicate the spectral regions where the STE was minimal. The dashed curve in plot (a) represents the STE for the model [ R rs - 1 ( λ 1 ) - R rs - 1 ( 710 ) ] R rs ( 740 ) that was used to verify the tuning procedure.

Fig. 6
Fig. 6

STE of estimate for models Y (left column) and Z (right column) as a function of λ1 and λ3: (a), (b) all data shown; (c), (d) spectra with red reflectance minimum at λ < 675 nm were excluded. Numbers in legend refer to the values of λ3. For model Y, we used λ2 = 710 nm; thus only λ3 ≥ 710 nm were considered. Note the change of scale on the ordinate axis between plots on first and second rows.

Fig. 7
Fig. 7

Frequency distribution of the positions of the pigment red-absorption maximum measured in laboratory (using monochromatic light) and of the corresponding minimum of reflectance measured in the field.

Fig. 8
Fig. 8

Scatter plots of different versions of the model versus [Chla] measured analytically. The solid lines are the linear-regression fits. Coefficients of determination are also reported for each plot.

Fig. 9
Fig. 9

Validation scatter plots for different versions of the model. The solid lines represent the 1-to-1 lines. Root-mean-square errors (RMSE), in mg m−3) and relative root-mean-square errors (RMS) are also reported in each plot.

Tables (4)

Tables Icon

Table 1 Descriptive Statistics of the Optical Water Quality Parameters Measureda

Tables Icon

Table 2 Intercepts (a0) and slopes (a1) with Corresponding Standard Errors (STE), Standard Errors of Estimate, and Coefficients of Determination (r2) for Linear Regressions of Different Versions of the Model Obtained Using the Development Data Seta

Tables Icon

Table 3 Descriptive Statistics of the Coefficient of Variation (%) Obtained Estimating [Chla] Using the Six Replicate Reflectance Spectra Collected at Each Station, and Different Models Versions with the a0 and a1 Coefficients Presented in Table 2 (N = 100)

Tables Icon

Table 4 Results of the Model Validationa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R rs ( λ , θ , ϕ ) f ( λ , θ w , ϕ w ) Q ( λ , θ w , ϕ w ) b b ( λ ) a ( λ ) + b b ( λ ) ,
R rs - 1 ( λ 1 ) Q f a Chla ( λ 1 ) + a TD ( λ 1 ) + a w ( λ 1 ) + b b b b ,
R rs - 1 ( λ 1 ) - R rs - 1 ( λ 2 ) Q f a Chla ( λ 1 ) + a w ( λ 1 ) - a w ( λ 2 ) b b
R rs ( λ 3 ) f Q b b .
[ R rs - 1 ( λ 1 ) - R rs - 1 ( λ 2 ) ] R rs ( λ 3 ) a Chla ( λ 1 ) .
R rs - 1 ( λ 1 ) R rs ( λ 3 ) a Chla ( λ 1 ) .
DN L = L u ( 0 - ) k L ,
DN E = E d ( 0 + ) k E ,
R rs = DN L DN E D N ref , E D N ref , L R ref π t n 2 F i ,

Metrics