Abstract

Mixing dielectric materials in solid-thin-film deposition allows the engineering of thin films’ optical constants to meet specific thin-film-device requirements, which can be significantly useful for optoelectronics devices and photonics technologies in general. In principle, by use of radio-frequency (rf) magnetron sputtering, it would be possible to mix any two, or more, materials at different molar ratios as long as the mixed materials are not chemically reactive in the mixture. This freedom in material mixing by use of magnetron sputtering has an advantage by providing a wide range of the material optical constants, which eventually enables the photonic-device designer to have the flexibility to achieve optimal device performance. We deposited three combinations from three different oxides by using rf magnetron sputtering and later investigated them for their optical constants. Each two-oxide mixture was done at different molar ratio levels. Moreover, postdeposition annealing was investigated and was shown to reduce the optical losses and to stabilize the film composition against environmental effects such as aging and humidity exposure. These investigations were supported by the fabricated planar waveguides and optical resonant filters.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okimura, A. Shibata, “Deposition of high quality TiO2 films by RF magnetron sputtering with an auxiliary permanent magnet,” Jpn. J. Appl. Phys. 36, 4917–4921 (1997).
    [CrossRef]
  2. C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
    [CrossRef]
  3. P. Alexandrov, J. Koprinarova, D. Todorov, “Dielectric properties of TiO2 reactivity sputtered from Ti in an RF magnetron,” Vacuum 47, 1333–1336 (1996).
    [CrossRef]
  4. T. Yamagauchi, H. Tamura, S. Taga, S. Tsuchiya, “Interfacial optical absorption in TiO2–SiO2 multilayer coatings prepared by rf magnetron sputtering,” Appl. Opt. 25, 2703–2706 (1986).
    [CrossRef]
  5. K. G. Geraghty, L. F. Donaghey, “Preparation of suboxides in the Ti-O system by reactive sputtering,” Thin Solid Films 40, 375–383 (1977).
    [CrossRef]
  6. E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
    [CrossRef]
  7. B. J. Pond, J. I. DeBar, C. K. Carniglia, T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800–2805 (1989).
    [CrossRef] [PubMed]
  8. A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
    [CrossRef]
  9. R. Rabady, I. Avrutsky, “Reliable fabrication technologies for optical resonant filters,” Appl. Opt. 42, 4499–4504 (2003).
    [CrossRef] [PubMed]
  10. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
    [CrossRef]
  11. E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D 9, 1939–1943 (1971).
    [CrossRef]
  12. L. Ward, The Optical Constants of Bulk Material and Films, 2nd ed. (Institute of Physics, London, (1994).

2003

2002

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

2001

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

1997

K. Okimura, A. Shibata, “Deposition of high quality TiO2 films by RF magnetron sputtering with an auxiliary permanent magnet,” Jpn. J. Appl. Phys. 36, 4917–4921 (1997).
[CrossRef]

1996

P. Alexandrov, J. Koprinarova, D. Todorov, “Dielectric properties of TiO2 reactivity sputtered from Ti in an RF magnetron,” Vacuum 47, 1333–1336 (1996).
[CrossRef]

1989

1986

1983

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

1977

K. G. Geraghty, L. F. Donaghey, “Preparation of suboxides in the Ti-O system by reactive sputtering,” Thin Solid Films 40, 375–383 (1977).
[CrossRef]

1971

E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D 9, 1939–1943 (1971).
[CrossRef]

Akwani, I. A.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

Alexandrov, P.

P. Alexandrov, J. Koprinarova, D. Todorov, “Dielectric properties of TiO2 reactivity sputtered from Ti in an RF magnetron,” Vacuum 47, 1333–1336 (1996).
[CrossRef]

Avrutsky, I.

Bellman, R. A.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

Carniglia, C. K.

DeBar, J. I.

Donaghey, L. F.

K. G. Geraghty, L. F. Donaghey, “Preparation of suboxides in the Ti-O system by reactive sputtering,” Thin Solid Films 40, 375–383 (1977).
[CrossRef]

Duverger, C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Farabaugh, E. N.

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

Ferrari, M.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Geraghty, K. G.

K. G. Geraghty, L. F. Donaghey, “Preparation of suboxides in the Ti-O system by reactive sputtering,” Thin Solid Films 40, 375–383 (1977).
[CrossRef]

Khawaja, E. E.

E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D 9, 1939–1943 (1971).
[CrossRef]

Koprinarova, J.

P. Alexandrov, J. Koprinarova, D. Todorov, “Dielectric properties of TiO2 reactivity sputtered from Ti in an RF magnetron,” Vacuum 47, 1333–1336 (1996).
[CrossRef]

Logunov, S. L.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

McCamy, J. W.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

Montagna, M.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Moser, E.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Okimura, K.

K. Okimura, A. Shibata, “Deposition of high quality TiO2 films by RF magnetron sputtering with an auxiliary permanent magnet,” Jpn. J. Appl. Phys. 36, 4917–4921 (1997).
[CrossRef]

Osinsky, A. V.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

Pelli, S.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Pond, B. J.

Rabady, R.

Raj, T.

Righini, G. C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Rolli, R.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Ronchin, S.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Rossi, F.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Sachenik, P. A.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

Sanders, D. M.

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

Shibata, A.

K. Okimura, A. Shibata, “Deposition of high quality TiO2 films by RF magnetron sputtering with an auxiliary permanent magnet,” Jpn. J. Appl. Phys. 36, 4917–4921 (1997).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

Taga, S.

Tamura, H.

Todorov, D.

P. Alexandrov, J. Koprinarova, D. Todorov, “Dielectric properties of TiO2 reactivity sputtered from Ti in an RF magnetron,” Vacuum 47, 1333–1336 (1996).
[CrossRef]

Tosello, C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

Tsuchiya, S.

Ward, L.

L. Ward, The Optical Constants of Bulk Material and Films, 2nd ed. (Institute of Physics, London, (1994).

Yamagauchi, T.

Appl. Opt.

Appl. Phys. Lett.

A. V. Osinsky, R. A. Bellman, I. A. Akwani, P. A. Sachenik, S. L. Logunov, J. W. McCamy, “Optical loss mechanisms in GeSiON planar waveguides,” Appl. Phys. Lett. 81, 2002–2004 (2002).
[CrossRef]

J. Non-Cryst. Solids

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, S. Pelli, E. Moser, M. Montagna, M. Ferrari, C. Duverger, “Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 248, 230–236 (2001).
[CrossRef]

J. Phys. D

E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D 9, 1939–1943 (1971).
[CrossRef]

J. Phys. E

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

J. Vac. Sci. Technol. A

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

Jpn. J. Appl. Phys.

K. Okimura, A. Shibata, “Deposition of high quality TiO2 films by RF magnetron sputtering with an auxiliary permanent magnet,” Jpn. J. Appl. Phys. 36, 4917–4921 (1997).
[CrossRef]

Thin Solid Films

K. G. Geraghty, L. F. Donaghey, “Preparation of suboxides in the Ti-O system by reactive sputtering,” Thin Solid Films 40, 375–383 (1977).
[CrossRef]

Vacuum

P. Alexandrov, J. Koprinarova, D. Todorov, “Dielectric properties of TiO2 reactivity sputtered from Ti in an RF magnetron,” Vacuum 47, 1333–1336 (1996).
[CrossRef]

Other

L. Ward, The Optical Constants of Bulk Material and Films, 2nd ed. (Institute of Physics, London, (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Rf magnetron sputtering setup for the two-oxide-mixture deposition. MW, microwave.

Fig. 2
Fig. 2

(a) X-ray diffraction for the first titania–silica sample in Table 1. (b) X-ray diffraction for the first titania–tantalum pentoxide sample in Table 2. (c) X-ray diffraction for the first silica–tantalum pentoxide sample in Table 3.

Fig. 3
Fig. 3

Measurement setup for waveguide excitation and optical losses.

Fig. 4
Fig. 4

Computer-controlled setup for a period-controlled gratings’ patterning.

Fig. 5
Fig. 5

(a) Transmission spectra (solid curve) and fit (dashed curve) for titania–tantalum pentoxide film for extracting the film’s real refractive index and thickness. (b) Optical losses’ power decay (solid curve) and exponential decay fit (dashed curve) for titania–tantalum pentoxide film.

Fig. 6
Fig. 6

Measurements of Ta2O5–SiO2 waveguide optical losses before and after annealing; the dashed curve is the measured optical losses before annealing, the solid curve is the measured optical losses after annealing, and the dashed-dotted line is the fit of the measured optical losses after annealing.

Fig. 7
Fig. 7

(a) Setup for the characterization of the optical resonant filter. (b) Transmission spectra of an optical resonant filter that is made of a TiO2 waveguide and the effect of annealing for two annealing conditions. (c) Transmission spectra of an optical resonant filter that is made of a TiO2–SiO2 waveguide and the effects of two weeks’ exposure to relative humidity of 80% and annealing.

Tables (4)

Tables Icon

Table 1 TiO2–SiO2 Films’ Deposition Settings and the Resulting Optical Constants and Deposition Rates

Tables Icon

Table 2 TiO2–Ta2O5 Films’ Deposition Settings and the Resulting Optical Constants and Deposition Rates

Tables Icon

Table 3 Ta2O5–SiO2 Films’ Deposition Settings and the Resulting Optical Constants and Deposition Rates

Tables Icon

Table 4 Enhancement of Optical Losses by Annealing

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( n * - m λ Λ ) 2 + sin 2 θ = ( λ κ 4 π ) 2 ,
n * = m λ Λ ± sin θ .

Metrics