Abstract

We introduce a new method, to our knowledge, for direct detection of flow signal intensity by stationary target rejection. In our system, two delay lines are constructed with identical scanning speed and ranging depth. One delay line is used for depth ranging as well as phase modulation, and the other one acts as a full-range retroreflector (FRRR). The signal from this FRRR carries the overall features of local phase modulation, and it is used as the local oscillator for coherent demodulation. With this setup, stationary targets can be rejected at a 4-kHz high-pass cutoff frequency of the filter that follows the demodulator, compared with 20 kHz for conventional fixed-frequency demodulation. This technique features angle insensitivity and provides flow direction as well by implementing standard in-phase and quadrature detection. Besides the direct directional detection of flow signal intensity, flow speed information can be acquired with postprocessing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
    [CrossRef] [PubMed]
  2. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Germert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. A. M. Rollins, S. Yazdanfar, J. K. Barton, J. A. Izatt, “Real-time in vivo color Doppler optical coherence tomography,” J. Biomed. Opt. 7, 123–129 (2002).
    [CrossRef] [PubMed]
  6. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).
    [CrossRef]
  7. D. Piao, Q. Zhu, “Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography,” Appl. Opt. 42, 5158–5168 (2003).
    [CrossRef] [PubMed]
  8. H. Ren, Y. Wang, J. S. Nelson, Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 225–231 (2003).
    [CrossRef]
  9. V. W. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
    [CrossRef]
  10. Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).
    [CrossRef]
  11. S. Yan, D. Piao, Y. Chen, Q. Zhu, “Digital signal processor–based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454–463 (2004).
    [CrossRef] [PubMed]
  12. A. V. Zvyagin, J. B. FitzGerald, K. K. M. B. D. Silva, D. D. Sampson, “Real-time detection technique for Doppler optical coherence tomography,” Opt. Lett. 25, 1645–1647 (2000).
    [CrossRef]
  13. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
    [CrossRef] [PubMed]
  14. V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
    [CrossRef]
  15. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
    [CrossRef] [PubMed]
  16. A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).
  17. S. Yazdanfar, J. A. Izatt, “Self-referenced Doppler optical coherence tomography,” Opt. Lett. 27, 2085–2087 (2002).
    [CrossRef]
  18. T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
    [CrossRef] [PubMed]
  19. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  20. N. G. Chen, Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
    [CrossRef]
  21. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  22. D. Piao, Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40, 97–98 (2004).
    [CrossRef]
  23. A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20, 333–341 (2003).
    [CrossRef]
  24. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
    [CrossRef] [PubMed]
  25. D. Piao, L. L. Otis, N. K. Dutta, Q. Zhu, “Quantitative assessment of flow velocity-estimation algorithms for optical Doppler tomography imaging,” Appl. Opt. 41, 6118–6127 (2002).
    [CrossRef] [PubMed]

2004 (2)

S. Yan, D. Piao, Y. Chen, Q. Zhu, “Digital signal processor–based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

D. Piao, Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40, 97–98 (2004).
[CrossRef]

2003 (5)

A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20, 333–341 (2003).
[CrossRef]

D. Piao, Q. Zhu, “Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography,” Appl. Opt. 42, 5158–5168 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
[CrossRef] [PubMed]

2002 (7)

2000 (2)

1998 (1)

1997 (3)

1995 (1)

X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1980 (1)

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Barton, J. K.

Bouma, B. E.

Brecke, K. M.

Brooksby, B.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N. G.

N. G. Chen, Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
[CrossRef]

Chen, Y.

S. Yan, D. Piao, Y. Chen, Q. Zhu, “Digital signal processor–based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

Chen, Z.

Chen, Z. P.

de Boer, J. F.

Dehghani, H.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Ding, Z.

Dutta, N. K.

FitzGerald, J. B.

A. V. Zvyagin, J. B. FitzGerald, K. K. M. B. D. Silva, D. D. Sampson, “Real-time detection technique for Doppler optical coherence tomography,” Opt. Lett. 25, 1645–1647 (2000).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Furgason, E. S.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ito, M.

T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

Johnson, G. F.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Kulkarni, M. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, S.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Malekafzali, A.

Milner, T. E.

Mok, A.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Moritani, Y.

T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
[CrossRef] [PubMed]

Nelson, J. S.

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).
[CrossRef]

Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Germert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef] [PubMed]

X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

H. Ren, Y. Wang, J. S. Nelson, Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 225–231 (2003).
[CrossRef]

Newhouse, V. L.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Okamura, Y.

T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
[CrossRef] [PubMed]

Otis, L. L.

Paulsen, K. D.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Pekar, J.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Piao, D.

Pogue, B. W.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Radhakrishnan, S.

A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).

Ren, H.

Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).
[CrossRef]

H. Ren, Y. Wang, J. S. Nelson, Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 225–231 (2003).
[CrossRef]

Rollins, A. M.

A. M. Rollins, S. Yazdanfar, J. K. Barton, J. A. Izatt, “Real-time in vivo color Doppler optical coherence tomography,” J. Biomed. Opt. 7, 123–129 (2002).
[CrossRef] [PubMed]

V. W. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
[CrossRef] [PubMed]

A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).

Sampson, D. D.

A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20, 333–341 (2003).
[CrossRef]

A. V. Zvyagin, J. B. FitzGerald, K. K. M. B. D. Silva, D. D. Sampson, “Real-time detection technique for Doppler optical coherence tomography,” Opt. Lett. 25, 1645–1647 (2000).
[CrossRef]

Saxer, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

SengYue, E.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Shiina, T.

T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
[CrossRef] [PubMed]

Silva, K. K. M. B. D.

A. V. Zvyagin, J. B. FitzGerald, K. K. M. B. D. Silva, D. D. Sampson, “Real-time detection technique for Doppler optical coherence tomography,” Opt. Lett. 25, 1645–1647 (2000).
[CrossRef]

Sivak, M. V.

A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).

Smith, E. D. J.

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Ungarunyawee, R.

van Germert, M. J. C.

Vishwanath, K.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Vitkin, I. A.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Wang, X. J.

Wang, Y.

H. Ren, Y. Wang, J. S. Nelson, Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 225–231 (2003).
[CrossRef]

Welch, A. J.

Westphal, V.

A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).

Westphal, V. W.

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Wolf, D. A.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Xiang, S.

Yan, S.

S. Yan, D. Piao, Y. Chen, Q. Zhu, “Digital signal processor–based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Yazdabfar, S.

A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).

Yazdanfar, S.

Zhao, Y.

Zhu, Q.

D. Piao, Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40, 97–98 (2004).
[CrossRef]

S. Yan, D. Piao, Y. Chen, Q. Zhu, “Digital signal processor–based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

D. Piao, Q. Zhu, “Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography,” Appl. Opt. 42, 5158–5168 (2003).
[CrossRef] [PubMed]

N. G. Chen, Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
[CrossRef]

D. Piao, L. L. Otis, N. K. Dutta, Q. Zhu, “Quantitative assessment of flow velocity-estimation algorithms for optical Doppler tomography imaging,” Appl. Opt. 41, 6118–6127 (2002).
[CrossRef] [PubMed]

Zvyagin, A. V.

A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20, 333–341 (2003).
[CrossRef]

A. V. Zvyagin, J. B. FitzGerald, K. K. M. B. D. Silva, D. D. Sampson, “Real-time detection technique for Doppler optical coherence tomography,” Opt. Lett. 25, 1645–1647 (2000).
[CrossRef]

Appl. Opt. (1)

T. Shiina, Y. Moritani, M. Ito, Y. Okamura, “Long-optical-path scanning mechanism for optical coherence tomography,” Appl. Opt. 42, 3795–3799 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Electron. Lett. (1)

D. Piao, Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40, 97–98 (2004).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Sonics Ultrason. SU-27, 50–59 (1980).
[CrossRef]

J. Biomed. Opt. (1)

A. M. Rollins, S. Yazdanfar, J. K. Barton, J. A. Izatt, “Real-time in vivo color Doppler optical coherence tomography,” J. Biomed. Opt. 7, 123–129 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

S. Yan, D. Piao, Y. Chen, Q. Zhu, “Digital signal processor–based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. SengYue, A. Mok, B. C. Wilson, I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

A. V. Zvyagin, J. B. FitzGerald, K. K. M. B. D. Silva, D. D. Sampson, “Real-time detection technique for Doppler optical coherence tomography,” Opt. Lett. 25, 1645–1647 (2000).
[CrossRef]

X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

N. G. Chen, Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

S. Yazdanfar, J. A. Izatt, “Self-referenced Doppler optical coherence tomography,” Opt. Lett. 27, 2085–2087 (2002).
[CrossRef]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Germert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).
[CrossRef]

V. W. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
[CrossRef]

Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

Phys. Med. Biol. (1)

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effect of internal refractive index variation in near-infrared optical tomography: a finite element modeling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

H. Ren, Y. Wang, J. S. Nelson, Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 225–231 (2003).
[CrossRef]

A. M. Rollins, S. Yazdabfar, S. Radhakrishnan, V. Westphal, M. V. Sivak, J. A. Izatt, “Real-time imaging of microstructure and blood flows using optical coherence tomography,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, Bellingham, Wash., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) DOCT signal applied to a low-pass filter after coherent demodulation: The output contains signals from both stationary and flowing targets. (b) DOCT signal applied to a bandpass filter after coherent demodulation: The output contains only the flow signal.

Fig. 2
Fig. 2

Schematic of a grating-based TD-SOD.

Fig. 3
Fig. 3

Schematic of the DOCT system for direct measurement of the flow signal intensity. SLD, superluminescent diode; FC, fiber coupler; PC, polarization controller; SOD1, scanning optical delay line 1 for depth ranging; SOD2, scanning optical delay line 2 acting as a full-range retroreflector (FRRR); TS, translation stage; GRIN lens, gradient-index lens; PD, photodetector; I, in-phase; Q, quadrature; Phase Comp, phase comparator; A/D, analog-to-digital conversion; DFII, directional flow intensity image; SI, structural image.

Fig. 4
Fig. 4

Signal level of SOD2 functioning as a FRRR.

Fig. 5
Fig. 5

Phase-modulation performance of SOD1: (a) the variance of the center frequency and (b) the FWHM modulation bandwidth.

Fig. 6
Fig. 6

(a) Structural image of Intralipid flow in two glass capillaries that are immerged in the Intralipid tank. (b) When demodulation at a fixed frequency is used, the stationary targets are rejected after the high-pass cutoff frequency of the filter following the demodulator has been increased to 20 kHz. (c) A large number of stationary targets remains when the fixed-frequency demodulation is followed by 4-kHz high-pass filtering. (d) When self-referenced coherent demodulation is used, the stationary targets are rejected at a 4-kHz high-pass cutoff frequency.

Fig. 7
Fig. 7

Example of direct directional flow intensity measurement: (a) structural image, (b) nondirectional flow intensity image, (c) directional flow intensity image, and (d) directional Doppler-shift image obtained with postprocessing on a direct directional flow intensity signal.

Fig. 8
Fig. 8

Example of direct flow intensity measurement of a near-transverse flow: (a) structural image, (b) nondirectional flow intensity image, (c) directional flow intensity image, and (d) directional Doppler-shift image obtained with postprocessing on a direct directional flow intensity signal.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

i sta ( t ) = A 0 x sta ( t ) cos ω 0 t ,             i flo ( t ) = A 0 x flo ( t ) cos ( ω 0 ± ω D ) t ,
I sta dem ( ω ) = 1 4 A 0 [ 2 X sta ( ω ) + X sta ( ω + 2 ω 0 ) + X sta ( ω - 2 ω 0 ) ] ,
I flo dem ( ω ) = 1 4 A 0 [ X flo ( ω + ω D ) + X flo ( ω - ω D ) + X flo ( ω ± ω D + 2 ω 0 ) + X flo ( ω ω D - 2 ω 0 ) ] ,
H lpf ( ω ) = { 2 ω ω cut _ high < ω 0 0 all other ω ,
1 2 π - H lpf ( ω ) I sta dem ( ω ) exp ( j ω t ) d ω = A 0 x sta ( t ) ,
1 2 π - H lpf ( ω ) I flo dem ( ω ) exp ( j ω t ) d ω = A 0 x flo ( t ) cos ω D t             for ω D < ω cut _ high .
H bpf ( ω ) = { 2 0 < ω cut _ low ω ω cut _ high < ω 0 0 all other ω ,
A 0 x flo ( t ) cos ω D t             for ω cut _ low < ω D < ω cut _ high .
i flo ( t ) = A 0 max ( ω D - Δ ω B , 0 ) ω D + Δ ω B Γ ( ω B ) x flo ( t ) × cos [ ω 0 + sgn ( ω D ) ω B ] t d ω B ,
I flo dem ( ω ) = 1 4 A 0 max ( ω D - Δ ω B , 0 ) ω D + Δ ω B Γ ( ω B ) { X f l o ( ω + ω B ) + X flo ( ω - ω B ) + X flo [ ω + sgn ( ω D ) ω B + 2 ω 0 ] + X flo [ ω - sgn ( ω D ) ω B - 2 ω 0 ] } d ω B .
A 0 ω D - Δ ω B ω D + Δ ω B Γ ( ω B ) x flo ( t ) cos ( ω B t ) d ω B for ω cut _ low < ω D ± Δ ω B < ω cut _ high .
A 0 ω cut _ low Δ ω B Γ ( ω B ) x flo ( t ) cos ( ω B t ) d ω B             for ω cut _ low < Δ ω B < ω cut _ high .
i sta dem ( t ) = { 1 2 A 0 x sta ( t ) ( 1 + cos 2 ω 0 t ) in - phase 1 2 A 0 x sta ( t ) sin 2 ω 0 t quadrature '
i flo dem ( t ) = { 1 2 A 0 x flo ( t ) [ cos ω D t + cos ( 2 ω 0 ± ω D ) t ] in - phase 1 2 A 0 x flo ( t ) [ sin ( ± ) ω D t + sin ( 2 ω 0 ± ω D ) t ] quadrature .
{ 0 in - phase 0 quadrature '
{ A 0 x flo ( t ) cos ω d t in - phase A 0 x flo ( t ) sin ( ± ) ω d t quadrature             for ω cut _ low < ω D < ω cut _ high .
i sta ( t ) = ω 0 - Δ ω 0 ω 0 + Δ ω 0 A ( ω m ) x sta ( t ) cos ω m t d ω m ,
I sta dem ( ω ) = 1 4 - Δ ω 0 Δ ω 0 A ( ω 0 + ω m ) [ X sta ( ω + ω m ) + X sta ( ω ) - ω m ) + X s t a ( ω + ω m + 2 ω 0 ) + X sta ( ω - ω m - 2 ω 0 ) ] d ω m .
H bpf ( ω ) = { 2 Δ ω 0 < ω cut _ low ω ω cut _ high < ω 0 0 all other ω .
H bpf ( ω ) = { 2 Δ ω c < ω cut _ low ω ω cut _ high < ω 0 0 all other ω .
H bpf ( ω ) = { 2 ( Δ ω 0 + Δ ω c ) < ω cut _ low ω ω cut _ high < ω 0 0 all other ω .
2 sin θ L = m ( λ / p )             m = 0 , 1 , 2 , ,
Δ l g , ϕ = 0 ( β ) = 2 β f tan θ L .
ϕ ( β ) = 8 π δ β λ 0 ( 1 + β ) ,
Δ l g , ϕ ( β ) = 2 β l 0 tan θ L + 2 δ β ( 1 + β ) ,
f 0 ( β ) = 1 2 π d ϕ ( β ) d t = 16 δ β 0 s gal ( 1 + 2 β ) / λ 0 ,
Δ f ( β ) = d Δ l g , ϕ ( β ) d t Δ λ λ 0 2 = 8 β 0 s gal [ l 0 tan θ L - δ ( 1 + 2 β ) Δ λ λ 0 2 ,
f 0 ( ± β 0 ) = 1 2 π d ϕ ( β ) d t | β = ± β 0 = 0 ,
Δ f ( ± β 0 ) = d Δ l g , ϕ ( β ) d t | β = ± β 0 Δ λ λ 0 2 = 8 β 0 s gal l 0 tan θ L Δ λ λ 0 2 .

Metrics