Abstract

A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil–plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in the array, allowing for simultaneous correction of the differential delay for the on-axis and off-axis image positions. Experimental results in a laboratory setup show that it is possible to recover the fringes of on-axis and off-axis stars with an angular separation of 1 arc min simultaneously and with a similar contrast. This new technique represents a considerable extension of the field of view of an interferometer without the need for extra observation time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Labeyrie, “Stellar interferometry methods,” Ann. Rev. Astron. Astrophys. 16, 77–102 (1978).
    [CrossRef]
  2. M. Tallon, I. Tallon-Bosc, “Beam combination for wide field imaging [invited],” in Very High Angular Resolution Imaging, Int. Astron. Union Symp.158, 83–90 (1994).
    [CrossRef]
  3. J. M. Beckers, “Field of view considerations for telescope arrays,” in Advanced Technology Optical Telescopes III, L. D. Barr, ed., Proc. SPIE628, 255–260 (1986).
    [CrossRef]
  4. J. M. Beckers, “The VLT interferometer. III. Factors affecting wide field-of-view operation,” in Advanced Technology Optical Telescopes IV, Proc. SPIE1236, L.D. 379–389 (1990).
    [CrossRef]
  5. G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).
  6. C. A. Haniff, “Practical considerations for imaging interferometry,” in Working on the Fringe: Optical and IR Interferometry from Ground and Space, Astron. Soc. Pac. Conf. Ser.194, 230–240 (1999).
  7. O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
    [CrossRef]
  8. A. Labeyrie, “Resolved imaging of extra-solar planets with future 10–100-km optical interferometric arrays,” Astron. Astrophys. Suppl. Ser. 118, 517–524 (1996).
    [CrossRef]
  9. E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
    [CrossRef]
  10. M. Schoeller, R. Wilhelm, B. Koehler, “Modeling the imaging process in optical stellar interferometers,” Astron. Astrophys. Suppl. Ser. 144, 541–552 (2000).
    [CrossRef]
  11. A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).
  12. A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Krieger, Malabar, Fla., 1991).
  13. I. Montilla, E. J. Bakker, S. F. Pereira, J. J. M. Braat, “A new concept for wide field imaging,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 416–424 (2003).
    [CrossRef]

2001 (2)

G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

2000 (2)

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

M. Schoeller, R. Wilhelm, B. Koehler, “Modeling the imaging process in optical stellar interferometers,” Astron. Astrophys. Suppl. Ser. 144, 541–552 (2000).
[CrossRef]

1996 (1)

A. Labeyrie, “Resolved imaging of extra-solar planets with future 10–100-km optical interferometric arrays,” Astron. Astrophys. Suppl. Ser. 118, 517–524 (1996).
[CrossRef]

1978 (1)

A. Labeyrie, “Stellar interferometry methods,” Ann. Rev. Astron. Astrophys. 16, 77–102 (1978).
[CrossRef]

Abuter, R.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Arnold, L.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Bakker, E. J.

I. Montilla, E. J. Bakker, S. F. Pereira, J. J. M. Braat, “A new concept for wide field imaging,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 416–424 (2003).
[CrossRef]

Beckers, J. M.

J. M. Beckers, “The VLT interferometer. III. Factors affecting wide field-of-view operation,” in Advanced Technology Optical Telescopes IV, Proc. SPIE1236, L.D. 379–389 (1990).
[CrossRef]

J. M. Beckers, “Field of view considerations for telescope arrays,” in Advanced Technology Optical Telescopes III, L. D. Barr, ed., Proc. SPIE628, 255–260 (1986).
[CrossRef]

Boccaletti, A.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

Braat, J. J. M.

I. Montilla, E. J. Bakker, S. F. Pereira, J. J. M. Braat, “A new concept for wide field imaging,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 416–424 (2003).
[CrossRef]

Carbognani, F.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Cassaing, F.

G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).

Dejonghe, J.

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Delplancke, F.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Derie, F.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Duc, T. P.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Gennai, A.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Gillet, S.

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Gitton, P.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Glindemann, A.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Haniff, C. A.

C. A. Haniff, “Practical considerations for imaging interferometry,” in Working on the Fringe: Optical and IR Interferometry from Ground and Space, Astron. Soc. Pac. Conf. Ser.194, 230–240 (1999).

Kervella, P.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Koehler, B.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

M. Schoeller, R. Wilhelm, B. Koehler, “Modeling the imaging process in optical stellar interferometers,” Astron. Astrophys. Suppl. Ser. 144, 541–552 (2000).
[CrossRef]

Labeyrie, A.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

A. Labeyrie, “Resolved imaging of extra-solar planets with future 10–100-km optical interferometric arrays,” Astron. Astrophys. Suppl. Ser. 118, 517–524 (1996).
[CrossRef]

A. Labeyrie, “Stellar interferometry methods,” Ann. Rev. Astron. Astrophys. 16, 77–102 (1978).
[CrossRef]

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Lardiere, O.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Leveque, S.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Menardi, S.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Michel, A.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Montilla, I.

I. Montilla, E. J. Bakker, S. F. Pereira, J. J. M. Braat, “A new concept for wide field imaging,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 416–424 (2003).
[CrossRef]

Moran, J. M.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Krieger, Malabar, Fla., 1991).

Mourard, D.

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Mugnier, L. M.

G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).

Paresce, F.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Pedretti, E.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

Pereira, S. F.

I. Montilla, E. J. Bakker, S. F. Pereira, J. J. M. Braat, “A new concept for wide field imaging,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 416–424 (2003).
[CrossRef]

Riaud, P.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

Richichi, A.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Rousset, G.

G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).

Schoeller, M.

M. Schoeller, R. Wilhelm, B. Koehler, “Modeling the imaging process in optical stellar interferometers,” Astron. Astrophys. Suppl. Ser. 144, 541–552 (2000).
[CrossRef]

Scholler, M.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Sorrente, B.

G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).

Swenson, G. W.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Krieger, Malabar, Fla., 1991).

Tallon, M.

M. Tallon, I. Tallon-Bosc, “Beam combination for wide field imaging [invited],” in Very High Angular Resolution Imaging, Int. Astron. Union Symp.158, 83–90 (1994).
[CrossRef]

Tallon-Bosc, I.

M. Tallon, I. Tallon-Bosc, “Beam combination for wide field imaging [invited],” in Very High Angular Resolution Imaging, Int. Astron. Union Symp.158, 83–90 (1994).
[CrossRef]

Tarenghi, M.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Thompson, A. R.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Krieger, Malabar, Fla., 1991).

Thureau, N.

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

Wallander, A.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

Wilhelm, R.

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

M. Schoeller, R. Wilhelm, B. Koehler, “Modeling the imaging process in optical stellar interferometers,” Astron. Astrophys. Suppl. Ser. 144, 541–552 (2000).
[CrossRef]

Ann. Rev. Astron. Astrophys. (1)

A. Labeyrie, “Stellar interferometry methods,” Ann. Rev. Astron. Astrophys. 16, 77–102 (1978).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (3)

A. Labeyrie, “Resolved imaging of extra-solar planets with future 10–100-km optical interferometric arrays,” Astron. Astrophys. Suppl. Ser. 118, 517–524 (1996).
[CrossRef]

E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290 (2000).
[CrossRef]

M. Schoeller, R. Wilhelm, B. Koehler, “Modeling the imaging process in optical stellar interferometers,” Astron. Astrophys. Suppl. Ser. 144, 541–552 (2000).
[CrossRef]

C. R. Acad. Sci. Paris IV (2)

A. Glindemann, R. Abuter, F. Carbognani, F. Delplancke, F. Derie, A. Gennai, P. Gitton, P. Kervella, B. Koehler, S. Leveque, S. Menardi, A. Michel, F. Paresce, T. P. Duc, A. Richichi, M. Scholler, M. Tarenghi, A. Wallander, R. Wilhelm, “The VLT interferometer,” C. R. Acad. Sci. Paris IV 2, 57–65 (2001).

G. Rousset, L. M. Mugnier, F. Cassaing, B. Sorrente, “Imaging with multi-aperture optical telescopes and an application,” C. R. Acad. Sci. Paris IV 2, 17–25 (2001).

Other (7)

C. A. Haniff, “Practical considerations for imaging interferometry,” in Working on the Fringe: Optical and IR Interferometry from Ground and Space, Astron. Soc. Pac. Conf. Ser.194, 230–240 (1999).

O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe, S. Gillet, “VIDA (VLTI Imaging with a densified array), a densified pupil combiner proposed for snapshot imaging with the VLTI,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 1018–1027 (2003).
[CrossRef]

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Krieger, Malabar, Fla., 1991).

I. Montilla, E. J. Bakker, S. F. Pereira, J. J. M. Braat, “A new concept for wide field imaging,” in Interferometry for Optical Astronomy II, W. Traub, ed., Proc. SPIE4838, 416–424 (2003).
[CrossRef]

M. Tallon, I. Tallon-Bosc, “Beam combination for wide field imaging [invited],” in Very High Angular Resolution Imaging, Int. Astron. Union Symp.158, 83–90 (1994).
[CrossRef]

J. M. Beckers, “Field of view considerations for telescope arrays,” in Advanced Technology Optical Telescopes III, L. D. Barr, ed., Proc. SPIE628, 255–260 (1986).
[CrossRef]

J. M. Beckers, “The VLT interferometer. III. Factors affecting wide field-of-view operation,” in Advanced Technology Optical Telescopes IV, Proc. SPIE1236, L.D. 379–389 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

OPD as a function of field angle. The differential OPD depends not only on baseline B and angle δθ between the pointing direction s and another direction in the sky s′ but also on angle θ between s and B.

Fig. 2
Fig. 2

Local horizon coordinate system XYZ, where baseline B is defined, and coordinate system uvw, where s and s′ are defined. The XY plane is the observer’s horizon, north is the X direction, east is the Y direction, and Z is the zenith. The latitude of the observing site is L. In the uvw system w is parallel to s, u is perpendicular to the plane defined by w and pole P, and v is perpendicular to the plane defined by u and w.

Fig. 3
Fig. 3

Differential OPD shape; the contour lines are lines of constant OPD.

Fig. 4
Fig. 4

OPD equalization; the light from different directions in the field is focused on different steps, and this effect introduces an extra OPD that depends on the field angle.

Fig. 5
Fig. 5

Mirror position for a telescope system. Telescopes T1, T2, and T3 have mirrors m1, m2, and m3 with widths w1, w2, and w3 and depths d1, d2, and d3, respectively. The dividing lines of each staircase mirror should be perpendicular to the projection of each baseline on the entrance pupil of each telescope, Bp1, Bp2, and Bp3, defined by pointing vector s.

Fig. 6
Fig. 6

Mirror width as a function of declination and hour angle for a given baseline and a maximum depth. The areas with low w values correspond to areas of low gradient of the OPD function.

Fig. 7
Fig. 7

Mirror depth as a function of declination and hour angle for a given baseline and a minimum width.

Fig. 8
Fig. 8

(a) Mirror depth plotted as a function of the LST for a given width, declination, and baseline. (b) Projection of the baseline vector on the entrance pupil. Because of the rotation of the Earth, the telescope has to change its pointing direction to follow an object in the sky. The result is the rotation of Bp during the observation.

Fig. 9
Fig. 9

Simulation of a staircase mirror placed on the Coudé focus of UT2. The shape of the mirror is shown for three different values of LST, (a), (b), and (c), at intervals of 3 h. The uv plane is the focal plane. The lines are the projections of the mirror steps on the uv plane. The faint arrows are gradients of the OPD and are perpendicular to the steps. The baseline projected in the entrance pupil is parallel to the gradient and points in the same direction. During observation, as the projection of the baseline on the entrance pupil rotates, the mirror follows this movement.

Fig. 10
Fig. 10

Schematic of the experimental setup consisting of three blocks: a star simulator with a white-light source and a star mask; an interferometer with the staircase mirror in one of the arms; and a beam combiner with a delay line. A detector was placed in one of the outputs of the beam splitter, and a CCD was placed at the other output to control pupil position. The delay line was connected to a piezo driver (PD) and to a signal generator to modulate the path, producing temporal fringes.

Fig. 11
Fig. 11

Experimental laser fringes used for alignment and calibration.

Fig. 12
Fig. 12

White-light fringes when the mirror has steps parallel to the baseline: (a) on-axis calibrated fringe, (b) off-axis calibrated fringe. The off-axis star fringe is out of the interferometric field of view; its peak is not observable.

Fig. 13
Fig. 13

White-light fringes when the steps of the mirror are perpendicular to the baseline: (a), (c) calibrated fringes from the on-axis stars; (b), (d) calibrated fringes from the off-axis stars. The interferometric field of view has been extended, and the peaks of the fringes of the off-axis stars are observed.

Fig. 14
Fig. 14

(a), (b) White-light fringes for two stars, both symmetric with respect to the optical axis; hence the same dispersion correction is applied, and they show similar contrast.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

R = [ cos H sin H sin L - sin H cos L - sin δ sin H sin δ cos H sin L + cos δ cos L - sin δ cos H cos L + cos δ sin L cos δ sin H - cos δ cos H sin L + sin δ cos L cos δ cos H cos L + sin δ sin L ] ,
[ B u B v B w ] = R [ B x B y B z ] ,
[ s u s v s w ] = [ 0 0 1 ] .
OPD = B w = B x cos δ sin H + B y ( cos L sin δ - sin L cos δ cos H ) + B z ( cos δ cos H cos L + sin δ sin L ) ,
OP D = B w = B x cos ( δ + Δ δ ) sin ( H + Δ H ) + B y [ cos L sin ( δ + Δ δ ) - sin L cos ( δ + Δ δ ) cos ( H + Δ H ) ] + B z [ cos ( δ + Δ δ ) × cos ( H + Δ H ) cos L + sin ( δ + Δ δ ) sin L ) .
B p = [ B u B v 0 ] .
Δ OPD ext = Δ δ [ - B x sin δ sin H + B y ( cos L     cos δ + sin L sin δ cos H ) - B z ( sin δ cos H cos L - cos δ sin L ) ] + Δ H ( B x cos δ cos H + B y sin L cos δ sin H - B z cos δ sin H cos L ) .
Δ OPD = 2 d cos α ,
OPD int = 1 2 t cos α { u [ - B x sin δ sin H + B y ( cos L cos δ + sin L sin δ cos H ) - B z ( sin δ cos H cos L - cos δ sin L ) + v ( B x cos H + B y sin L sin H - B z sin H cos L ) } ,
w = a [ ( OPD int u ) 2 + ( OPD int v ) ] 1 / 2 .
d = OPD int · p = a [ ( OPD int u ) 2 + ( OPD int v ) 2 ] 1 / 2 .
w d = [ ( OPD int u ) 2 + ( OPD int v ) 2 ] - 1 / 2 .
w δ ( δ min , H min ) = 0 , w H ( δ min , H min ) = 0 , 2 w δ H ( δ min , H min ) > 0.
M ( u , v ) = n = - N N n d rect ( B u u + B v v w min B p - n ) ,
d = w min [ ( OPD int u ) 2 + ( OPD int v ) 2 ] 1 / 2 .
d w = B 2 F tan α ,
φ = 1 B ( 2 n d cos α + n p - p ) ,

Metrics