Abstract

We describe optical monitoring of the synthesis of gold nanorods (NRs) based on seed-mediated growth in the presence of the soft surfactant template cetyltrimethyilammonium bromide. To separate NRs from spheres and surfactants we fractionated samples in the density gradient of glycerol. The optical properties of NRs were characterized by extinction and differential light-scattering spectra (at 90°, 450–800 nm) and by the depolarization light-scattering ratio, Ivh/Ivv, measured at 90° with a helium–neon laser. Theoretical spectra and the Ivh/Ivv ratios were calculated by the T-matrix method as applied to randomly oriented NRs, which were modeled by right-circular cylinders with semispherical ends. The simulated data were fitted to experimental observations by use of particle length and width as adjustable parameters, which were close to the data yielded by transmission electron microscopy. The sensitivity of the long-wavelength resonance of NRs to the dielectric surroundings was examined both experimentally and theoretically by comparison of the extinction spectra of NRs in water and in a 25% glycerol solution. Finally, we discuss the application of NR–protein A conjugates to a dot-immunogold assay with the example of biospecific staining of human IgG molecules adsorbed onto small membrane spots.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Niemeyer, C. A. Mirkin, eds., Nanobiotechnology: Concepts, Applications, and Perspectives (Wiley-VCH, 2004).
    [Crossref]
  2. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
    [Crossref]
  3. J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization,” Anal. Biochem. 262, 157–176 (1998).
    [Crossref] [PubMed]
  4. J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003).
    [Crossref]
  5. A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
    [Crossref]
  6. A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
    [Crossref]
  7. I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
    [Crossref] [PubMed]
  8. A. J. Haes, R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10,596–10,604 (2002).
    [Crossref]
  9. D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
    [Crossref] [PubMed]
  10. A. D. McFarland, R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [Crossref]
  11. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
    [Crossref]
  12. M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
    [Crossref]
  13. S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–346 (2003).
    [Crossref] [PubMed]
  14. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.
  15. S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [Crossref]
  16. V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).
  17. V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
    [Crossref]
  18. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
    [Crossref]
  19. V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).
  20. Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
    [Crossref]
  21. D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).
  22. X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
    [Crossref]
  23. J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
    [Crossref]
  24. C. Sönnichsen, A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
    [Crossref] [PubMed]
  25. L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004).
    [Crossref]
  26. W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
    [Crossref] [PubMed]
  27. B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
    [Crossref]
  28. A. I. Rusanov, Micellization in Surfactant Solutions (Gordon & Breach, 1999).
  29. N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).
  30. B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
    [Crossref]
  31. M.-Ch. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
    [Crossref] [PubMed]
  32. N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
    [Crossref]
  33. S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
    [Crossref]
  34. F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002).
    [Crossref]
  35. S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
    [Crossref]
  36. F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).
  37. Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001).
    [Crossref]
  38. R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 37, 881–900 (1912).
    [Crossref]
  39. S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999).
    [Crossref]
  40. N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004).
    [Crossref]
  41. N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
    [Crossref]
  42. J. De Mey, M. Moeremans, “The preparation of colloidal gold probes and their use as markers in electron microscopy,” in Advanced Techniques in Biological Electron Microscopy, J. K. Koehler, ed. (Springer-Verlag, 1986), Vol. 3, pp. 229–271.
    [Crossref]
  43. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).
  44. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).
  45. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
    [Crossref]
  46. V. A. Bogatyrev, L. A. Dykman, “Colloidal gold in solid-phase assays,” Biochemistry (Mos.) 62, 350–356 (1997).
  47. B. N. Khlebtsov, N. G. Khlebtsov, S. Yu. Shchyogolev, “Studies of liposomes by quasielastic light scattering and spectroturbidimetry,” in Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE4707, 261–265 (2002).
  48. URL: http://www.photocor.com ; http://www.protein-solutions.com .
  49. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  50. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  51. N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993).
    [Crossref]
  52. N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” in Coherent Optics of Ordered and Random Media IV, D. A. Zimnyakov, ed., Proc. SPIE5475, 1–11 (2004).
  53. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
    [Crossref]
  54. S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003).
    [Crossref]
  55. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [Crossref] [PubMed]
  56. E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [Crossref]
  57. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992).
    [Crossref] [PubMed]
  58. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  59. N. G. Khlebtsov, A. G. Melnikov, “Depolarization of light scattered by fractal soot clusters: an approximate anisotropic model,” Opt. Spectrosc. 79, 605–609 (1995).
  60. N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005).
    [Crossref]
  61. K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).
    [Crossref]
  62. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  63. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  64. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
    [Crossref]

2005 (4)

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

C. Sönnichsen, A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref] [PubMed]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005).
[Crossref]

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

2004 (8)

L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004).
[Crossref]

X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
[Crossref]

M.-Ch. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[Crossref] [PubMed]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).

2003 (13)

J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003).
[Crossref]

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–346 (2003).
[Crossref] [PubMed]

D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
[Crossref] [PubMed]

A. D. McFarland, R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[Crossref]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).

S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
[Crossref]

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003).
[Crossref]

2002 (7)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002).
[Crossref]

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
[Crossref]

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

A. J. Haes, R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10,596–10,604 (2002).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

2001 (5)

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

2000 (3)

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).
[Crossref]

1999 (2)

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

1998 (1)

J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization,” Anal. Biochem. 262, 157–176 (1998).
[Crossref] [PubMed]

1997 (1)

V. A. Bogatyrev, L. A. Dykman, “Colloidal gold in solid-phase assays,” Biochemistry (Mos.) 62, 350–356 (1997).

1996 (3)

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

1995 (2)

N. G. Khlebtsov, A. G. Melnikov, “Depolarization of light scattered by fractal soot clusters: an approximate anisotropic model,” Opt. Spectrosc. 79, 605–609 (1995).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).

1993 (1)

N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993).
[Crossref]

1992 (1)

1912 (1)

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 37, 881–900 (1912).
[Crossref]

Alekseeva, A. V.

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

Alivisatos, A. P.

C. Sönnichsen, A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref] [PubMed]

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Arrighini, G. P.

S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003).
[Crossref]

Astruc, D.

M.-Ch. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[Crossref] [PubMed]

Balasingham, A.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Bauer, L. A.

L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004).
[Crossref]

Birenbaum, N. S.

L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004).
[Crossref]

Bogatyrev, V. A.

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, “Colloidal gold in solid-phase assays,” Biochemistry (Mos.) 62, 350–356 (1997).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).

V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.

Böhmer, M. R.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boudreau, R.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Brown, K. R.

K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).
[Crossref]

Bruzzone, S.

S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003).
[Crossref]

Cai, R.

X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
[Crossref]

Cai, W.

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

Chah, S.

S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
[Crossref]

Chang, J.-Y.

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

Chen, F.

F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).

Chen, H.

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

Chen, W.

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

Coronado, E.

L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Coronado, E. A.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

Daniel, M.-Ch.

M.-Ch. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[Crossref] [PubMed]

De Mey, J.

J. De Mey, M. Moeremans, “The preparation of colloidal gold probes and their use as markers in electron microscopy,” in Advanced Techniques in Biological Electron Microscopy, J. K. Koehler, ed. (Springer-Verlag, 1986), Vol. 3, pp. 229–271.
[Crossref]

Dykman, L. A.

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, “Colloidal gold in solid-phase assays,” Biochemistry (Mos.) 62, 350–356 (1997).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).

V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.

El-Sayed, M. A.

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–346 (2003).
[Crossref] [PubMed]

B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Farafonov, V. G.

N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993).
[Crossref]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Feng, Z.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Fokkink, L. G. J.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Freeman, R. G.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Gans, R.

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 37, 881–900 (1912).
[Crossref]

Gearheart, L.

N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).

N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

Gerion, D.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Gryczynski, I.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

Gryczynski, Z.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

Guidotti, C.

S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003).
[Crossref]

Gupta, D.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Haes, A. J.

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
[Crossref]

A. J. Haes, R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10,596–10,604 (2002).
[Crossref]

He, L.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Hor, T. S. A.

F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).

Hsieh, S.

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jana, N.

N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
[Crossref]

Jana, N. R.

Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).

Jiang, Z.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Kang, S. K.

S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
[Crossref]

Kelly, L.

L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Khlebtsov, B. N.

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

B. N. Khlebtsov, N. G. Khlebtsov, S. Yu. Shchyogolev, “Studies of liposomes by quasielastic light scattering and spectroturbidimetry,” in Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE4707, 261–265 (2002).

Khlebtsov, N. G.

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).

N. G. Khlebtsov, A. G. Melnikov, “Depolarization of light scattered by fractal soot clusters: an approximate anisotropic model,” Opt. Spectrosc. 79, 605–609 (1995).

N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992).
[Crossref] [PubMed]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” in Coherent Optics of Ordered and Random Media IV, D. A. Zimnyakov, ed., Proc. SPIE5475, 1–11 (2004).

B. N. Khlebtsov, N. G. Khlebtsov, S. Yu. Shchyogolev, “Studies of liposomes by quasielastic light scattering and spectroturbidimetry,” in Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE4707, 261–265 (2002).

V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.

Kim, F.

F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002).
[Crossref]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

Koel, B. E.

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

Krasnov, Ya. M.

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).

Lakowicz, J. R.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

Larabell, C. A.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Le Gros, M. A.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Li, F.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Li, T.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Ling, Y.-C.

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

Link, S.

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–346 (2003).
[Crossref] [PubMed]

M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Liu, X.

X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
[Crossref]

Malicka, J.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

McFarland, A. D.

A. D. McFarland, R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[Crossref]

Medvedev, B. A.

V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).

Melnikov, A. G.

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, A. G. Melnikov, “Depolarization of light scattered by fractal soot clusters: an approximate anisotropic model,” Opt. Spectrosc. 79, 605–609 (1995).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” in Coherent Optics of Ordered and Random Media IV, D. A. Zimnyakov, ed., Proc. SPIE5475, 1–11 (2004).

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.

Meltzer, S.

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

Meyer, G. J.

L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004).
[Crossref]

Micheel, C.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).

Mock, J. J.

J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003).
[Crossref]

Moeremans, M.

J. De Mey, M. Moeremans, “The preparation of colloidal gold probes and their use as markers in electron microscopy,” in Advanced Techniques in Biological Electron Microscopy, J. K. Koehler, ed. (Springer-Verlag, 1986), Vol. 3, pp. 229–271.
[Crossref]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Murphy, C.

N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
[Crossref]

Murphy, C. J.

Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).

Natan, M. J.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).
[Crossref]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

Nikoobakht, B.

B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

Norton, S. M.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Obare, Sh.

N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
[Crossref]

Obare, Sh. O.

Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001).
[Crossref]

Oviso, D. F.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Pang, D.

X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
[Crossref]

Parak, W. J.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Pellegrino, T.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Plotnikov, V. K.

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

Raju, P. A.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

Requicha, A. A. G.

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

Roll, D.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

Rusanov, A. I.

A. I. Rusanov, Micellization in Surfactant Solutions (Gordon & Breach, 1999).

Schatz, G. C.

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
[Crossref]

L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

Schönenberger, C.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Schultz, D. A.

D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
[Crossref] [PubMed]

Schultz, S.

J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003).
[Crossref]

Shchyogolev, S. Yu.

B. N. Khlebtsov, N. G. Khlebtsov, S. Yu. Shchyogolev, “Studies of liposomes by quasielastic light scattering and spectroturbidimetry,” in Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE4707, 261–265 (2002).

Smith, D. R.

J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003).
[Crossref]

Song, J. H.

F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Tan, W.

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

Thompson, M. E.

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

Trachuk, L. A.

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005).
[Crossref]

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” in Coherent Optics of Ordered and Random Media IV, D. A. Zimnyakov, ed., Proc. SPIE5475, 1–11 (2004).

Travis, L. D.

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

van der Zande, B. M. I.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Van Duyne, R. P.

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

A. D. McFarland, R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[Crossref]

A. J. Haes, R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10,596–10,604 (2002).
[Crossref]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Voshchinnikov, N. V.

N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993).
[Crossref]

Walter, D. G.

K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).
[Crossref]

Walton, I. D.

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

Wang, C. R. C.

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

Wang, G.

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Williams, S. C.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Wu, H.

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

Xie, J.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Xu, G. Q.

F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).

Yang, P.

F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002).
[Crossref]

Yguerabide, E.

J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization,” Anal. Biochem. 262, 157–176 (1998).
[Crossref] [PubMed]

Yguerabide, J.

J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization,” Anal. Biochem. 262, 157–176 (1998).
[Crossref] [PubMed]

Yi, J.

S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
[Crossref]

Yi, X.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Yuan, H.

X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
[Crossref]

Yun, Ch. Y.

S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
[Crossref]

Zanchet, D.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Zhang, L.

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

Zhao, L. L.

L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zhong, F.

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

Adv. Mater. (1)

N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

Anal. Biochem. (1)

J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization,” Anal. Biochem. 262, 157–176 (1998).
[Crossref] [PubMed]

Anal. Chem. (2)

I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, D. Gupta, P. A. Raju, M. J. Natan, R. G. Freeman, “Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy,” Anal. Chem. 74, 2240–2247 (2002).
[Crossref] [PubMed]

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440–3445 (2003).

Ann. Phys. (1)

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 37, 881–900 (1912).
[Crossref]

Annu. Rev. Phys. Chem. (1)

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–346 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Astrophys. Space Sci. (1)

N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993).
[Crossref]

Biochemistry (Mos.) (1)

V. A. Bogatyrev, L. A. Dykman, “Colloidal gold in solid-phase assays,” Biochemistry (Mos.) 62, 350–356 (1997).

Chem. Commun. (1)

J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, “Oriented assembly of Au nanorods using biorecognition system,” Chem. Commun. 8, 1092–1094 (2005).
[Crossref]

Chem. Mater. (2)

B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12, 306–313 (2000).
[Crossref]

Chem. Phys. (1)

S. Bruzzone, G. P. Arrighini, C. Guidotti, “Some spectroscopic properties of gold nanorods according to a schematic quantum model founded on the dielectric behavior of the electron-gas confined in a box. I,” Chem. Phys. 291, 125–140 (2003).
[Crossref]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

Chem. Rev. (1)

M.-Ch. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[Crossref] [PubMed]

Colloid J. (3)

V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov, “Differential light spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes,” Colloid J. 64, 671–680 (2002).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates,” Colloid J. 57, 384–395 (1995).

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Optical properties of colloidal gold and its biospecific conjugates. Errata,” Colloid J. 58, 114 (1996).

Curr. Opin. Biotechnol. (1)

D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

A. J. Haes, R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10,596–10,604 (2002).
[Crossref]

F. Kim, J. H. Song, P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14,316–14,317 (2002).
[Crossref]

J. Chem. Phys. (1)

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

J. Colloid Interface Sci. (3)

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, “Spectral extinction of colloidal gold and its biospecific conjugates,” J. Colloid Interface Sci. 180, 436–445 (1996).
[Crossref]

W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, “Sono-chemical processes and formation of gold nanoparticles within pores of mesoporous silica,” J. Colloid Interface Sci. 238, 291–295 (2001).
[Crossref] [PubMed]

J. Phys. Chem. (1)

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065–4067 (2001).

J. Phys. Chem. B (7)

L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constants,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B 109, 13,578–13,584 (2005).
[Crossref]

S. Hsieh, S. Meltzer, C. R. C. Wang, A. A. G. Requicha, M. E. Thompson, B. E. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” J. Phys. Chem. B 106, 231–234 (2002).
[Crossref]

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, “A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, Ya. M. Krasnov, “Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors,” J. Quant. Spectrosc. Radiat. Transfer 89, 133–142 (2004).
[Crossref]

Korean J. Chem. Eng. (1)

S. K. Kang, S. Chah, Ch. Y. Yun, J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean J. Chem. Eng. 20, 1145–1148 (2003).
[Crossref]

Langmuir (2)

N. Jana, L. Gearheart, Sh. Obare, C. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir 18, 922–927 (2002).
[Crossref]

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal dispersion of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Mater. Chem. (1)

L. A. Bauer, N. S. Birenbaum, G. J. Meyer, “Biological applications of high aspect ratio nanoparticles,” Mater. Chem. 14, 517–526 (2004).
[Crossref]

Mater. Lett. (1)

F. Chen, G. Q. Xu, T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,” Mater. Lett. 4325, 1–5 (2003).

Nano Lett. (5)

Sh. O. Obare, N. R. Jana, C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1, 601–603 (2001).
[Crossref]

C. Sönnichsen, A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref] [PubMed]

A. D. McFarland, R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[Crossref]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[Crossref]

J. J. Mock, D. R. Smith, S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003).
[Crossref]

Nanotechnology (1)

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[Crossref]

Opt. Spectrosc. (4)

V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, N. G. Khlebtsov, “Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering,” Opt. Spectrosc. 94, 161–169 (2004).

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “A new spectral resonance of metal nanorods,” Opt. Spectrosc. 97, 105–107 (2004).
[Crossref]

N. G. Khlebtsov, A. G. Melnikov, “Depolarization of light scattered by fractal soot clusters: an approximate anisotropic model,” Opt. Spectrosc. 79, 605–609 (1995).

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Effect of the size, shape, and structure of metal nanoparticles on the dependence their optical properties on the refractive index of the external medium,” Opt. Spectrosc. 98, 82–89 (2005).
[Crossref]

Phys. Rev. Lett. (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Sci. China Ser. B Chem. (1)

Z. Jiang, Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, X. Yi, “Resonance scattering spectroscopy of gold nanoparticle,” Sci. China Ser. B Chem. 44, 175–181 (2001).
[Crossref]

Spectrochim. Acta Part A (1)

X. Liu, H. Yuan, D. Pang, R. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385–389 (2004).
[Crossref]

Other (12)

V. A. Bogatyrev, B. A. Medvedev, L. A. Dykman, N. G. Khlebtsov, “Light scattering spectra of colloidal gold aggregates: experimental measurements and theoretical simulations,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 42–48 (2001).

A. I. Rusanov, Micellization in Surfactant Solutions (Gordon & Breach, 1999).

N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, “Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates,” in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv, M. I. Mishchenko, eds. (Kluwer Academic, 2004), pp. 265–308.

C. M. Niemeyer, C. A. Mirkin, eds., Nanobiotechnology: Concepts, Applications, and Perspectives (Wiley-VCH, 2004).
[Crossref]

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

J. De Mey, M. Moeremans, “The preparation of colloidal gold probes and their use as markers in electron microscopy,” in Advanced Techniques in Biological Electron Microscopy, J. K. Koehler, ed. (Springer-Verlag, 1986), Vol. 3, pp. 229–271.
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” in Coherent Optics of Ordered and Random Media IV, D. A. Zimnyakov, ed., Proc. SPIE5475, 1–11 (2004).

B. N. Khlebtsov, N. G. Khlebtsov, S. Yu. Shchyogolev, “Studies of liposomes by quasielastic light scattering and spectroturbidimetry,” in Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE4707, 261–265 (2002).

URL: http://www.photocor.com ; http://www.protein-solutions.com .

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

TEM images of gold NRs with plasmon resonance peaks at (a) 655 nm and (b) 700 nm (after Nikoobakht and El-Sayed30). (c) Spheroidal and s-cylinder models defined by geometric sizes a and b. Obviously, the spheroidal model does not match the shape of gold NRs.

Fig. 2
Fig. 2

Time course of the extinction spectra measured for the growing gold nanorods NR-720 immediately after seed addition. The recorded curves correspond to 1, the seed solution; 2, the growth solution; and the mixture solution for 3, 2; 4, 5; 5, 30; and 6, 60 min; and 7, 17 h after mixing.

Fig. 3
Fig. 3

Schematic view of tubes with nanoparticle suspensions before and after centrifugation in the density gradient of glycerol.

Fig. 4
Fig. 4

Extinction spectra of gold nanoparticle suspensions: 0, before and 1–3, after fractionation. Shown are three spectra corresponding to first, second, and third fractions. The lack of the spectral shoulder (near 550 nm) for fraction 1 (NR-733) can be attributed to the absence of spherical particles, which is clearly seen on the bottom spectrum (fraction 3). The spectrum for fraction 2 can be attributed to a mixture of NRs and nanospheres.

Fig. 5
Fig. 5

Extinction (solid curve) and differential light-scattering (dashed curve) spectra of separated NR-640 particles (fraction 1: the sample corresponds to an independent experimental run different from that of Fig. 4). A short-wavelength resonance is clearly seen in the extinction spectrum, whereas a minor shoulder appears in the scattering curve. Note also the remarkable quality of the longitudinal scattering resonance in comparison with the extinction spectrum.

Fig. 6
Fig. 6

Experimental extinction spectra of NR-655 in 25% glycerol and water, measured for fraction 1.

Fig. 7
Fig. 7

Theoretical extinction spectra of (a) randomly oriented s-cylinders, [thickness 2b equals 15 nm; axial ratio e = (a + b)/b = 2.6)] and (b) a mixture of the same s-cylinders and spheres of radius Rs = 19.5 nm. Volume fraction of spheres Ws = 0.37 was used to fit experimental peak ratio A655/A515.

Fig. 8
Fig. 8

Biospecific staining of spots with adsorbed hIgG molecules by protein A–NR-655 conjugates. Numbers indicate the dilution of an initial hIgG solution (1:2:4:8:16:32). No staining occurred for nonspecific BSA molecules.

Tables (1)

Tables Icon

Table 1 Experimental and Theoretical Depolarization Light-Scattering Ratios Measured for a Scattering Angle θ of 90° and a Wavelength of 632.8 nm

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

t = i = 1 n t i ,
t i = 9 η i ln ( x i / x 0 i ) 2 r 2 ( ρ g - ρ 0 i ) ω 2 ,
α i = V 4 π ɛ - ɛ m ɛ m + L i ( ɛ - ɛ m ) ,             i = a , b , c ,
C abs = 8 π 2 ɛ m λ Im α = 8 π 2 ɛ m 3 λ Im i = a , b , c α i
γ abs = C abs N = 2 π N V 3 λ ɛ m 3 / 2 i = a , b , c ɛ ( 1 / L i 2 ) [ ɛ + ( 1 / L i - 1 ) ɛ m ] 2 + ɛ 2 ,
R e v = b ( 1 + 3 a 2 b ) 1 / 3 ,             e = a + b b .
ɛ R = ɛ b ( λ ) + Δ ɛ ( R e v , λ ) ,
A = log ( e ) 3 c g l 4 ρ g Q ext R ev ,
c g = 4 π 3 N ρ g R ev 3 .
Q ext = Q abs + Q sca = C ext π R ev 2 ,
C ext = π R ev 2 Q ext = 2 π k 2 Spur ( T ) ,
T v μ = - 1 1 F u μ [ z , r ( z ) , r 1 ( z ) ] d z ,
r 1 ( ϑ ) = - d ln [ r ( ϑ ) ] d ϑ .
r ( z ) = { a { z + [ ( b / a ) 2 + z 2 - 1 ] 1 / 2 tan ϑ b / a b 1 - z 2 tan ϑ b / a ,

Metrics