Abstract

We report on passive offset frequency stability in free-running applications and active offset frequency stability achieved by use of a frequency-locking technique for a Q-switched Z-fold rf-excited waveguide CO2 laser with two channels. The laser structure of common electrodes and two channels has the advantage of compensating for the frequency variation caused by variations in temperature, cavity length, gas refractive index, and mechanical vibrations, so its offset frequency stability is higher than that of two separate lasers. In the experiments, the offset frequency shift was less than 6 MHz for 3 min in free-running mode. The technique of active offset frequency locking by counting was also introduced. The beat frequency shifting value was smaller than ±0.5 MHz in the long term.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).
  2. H. Ahlberg, S. Lanqvist, D. Letalick, I. Renhorm, O. Sterinvall, “Imaging Q-switched CO2 laser radar with hetrodyne detection: design and evaluation,” Appl. Opt. 25, 2891–2898 (1986).
    [CrossRef]
  3. P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–505 (1995).
    [CrossRef] [PubMed]
  4. Z. S. Tian, Q. Wang, C. H. Wang, “Investigation of pulse heterodyne of electro-optically Q-switched rf excited CO2 waveguide laser with two channels,” Appl. Opt. 40, 3033–3037 (2001).
    [CrossRef]
  5. Z. S. Tian, Q. Wang, “Pulse heterodyne-reception with electrooptically Q-switched RF two-channel waveguide CO2laser,” in High-Power Lasers and Applications II, D. Fan, K. A. Truesdell, K. Yasui, eds., Proc. SPIE4914, 86–90 (2002).
  6. Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).
  7. K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
    [CrossRef]
  8. A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
    [CrossRef]

2001 (1)

2000 (1)

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

1995 (1)

1991 (1)

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
[CrossRef]

1990 (1)

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
[CrossRef]

1986 (1)

Abramski, K. M.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
[CrossRef]

Ahlberg, H.

Baker, H. J.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
[CrossRef]

Colley, A. D.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
[CrossRef]

Corbett, F.

F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).

Dabas, A.

Dryden, G.

F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).

Flamant, P. H.

Groden, M.

F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).

Hal, D. R.

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
[CrossRef]

Hall, D. R.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
[CrossRef]

Kovacs, M.

F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).

Lanqvist, S.

Letalick, D.

Li, Z. Q.

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

Lu, W.

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

Pfeiffer, G.

F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).

Renhorm, I.

Salamitou, P.

Sterinvall, O.

Tian, Z. S.

Z. S. Tian, Q. Wang, C. H. Wang, “Investigation of pulse heterodyne of electro-optically Q-switched rf excited CO2 waveguide laser with two channels,” Appl. Opt. 40, 3033–3037 (2001).
[CrossRef]

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

Z. S. Tian, Q. Wang, “Pulse heterodyne-reception with electrooptically Q-switched RF two-channel waveguide CO2laser,” in High-Power Lasers and Applications II, D. Fan, K. A. Truesdell, K. Yasui, eds., Proc. SPIE4914, 86–90 (2002).

Wang, C. H.

Wang, Q.

Z. S. Tian, Q. Wang, C. H. Wang, “Investigation of pulse heterodyne of electro-optically Q-switched rf excited CO2 waveguide laser with two channels,” Appl. Opt. 40, 3033–3037 (2001).
[CrossRef]

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

Z. S. Tian, Q. Wang, “Pulse heterodyne-reception with electrooptically Q-switched RF two-channel waveguide CO2laser,” in High-Power Lasers and Applications II, D. Fan, K. A. Truesdell, K. Yasui, eds., Proc. SPIE4914, 86–90 (2002).

Wang, Y. S.

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

Appl. Opt. (3)

Chin. J. Lasers A (1)

Z. S. Tian, Q. Wang, Y. S. Wang, Z. Q. Li, W. Lu, “Study of RF excited waveguide CO2 laser selected lines by gratings with common electrodes and two channels,” Chin. J. Lasers A 27, 961–964 (2000).

IEEE J. Quantum Electron. (2)

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hal, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 26, 711–717 (1990).
[CrossRef]

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced frequency modulation of RF excited waveguide lasers,” IEEE J. Quantum Electron. 27, 1939–1945 (1991).
[CrossRef]

Other (2)

F. Corbett, M. Groden, G. Dryden, M. Kovacs, G. Pfeiffer, “Real-time image generation with a pulsed coherent laser radar,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 242–250 (1997).

Z. S. Tian, Q. Wang, “Pulse heterodyne-reception with electrooptically Q-switched RF two-channel waveguide CO2laser,” in High-Power Lasers and Applications II, D. Fan, K. A. Truesdell, K. Yasui, eds., Proc. SPIE4914, 86–90 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the laser. PZT, piezoelectric element.

Fig. 2
Fig. 2

Schematic of the experimental arrangement.

Fig. 3
Fig. 3

Heterodyne waveform of the pulsed laser (1000 ns/division) and its Fourier transform frequency spectrum (10 MHz/division).

Fig. 4
Fig. 4

Variation in offset frequency over 3 min.

Fig. 5
Fig. 5

Block diagram of offset frequency locking.

Fig. 6
Fig. 6

Experimental results of offset frequency locking for the pulsed laser: (a) Offset frequency locking over 40 min (b) locking details for (a).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = - ν 0 ( Δ n n 0 + Δ L L ) ,
L Z 3 L S ,             Δ L Z 3 Δ L S ,
Δ ν Z = - ν 0 ( Δ n n 0 + Δ L Z L Z ) ,
Δ ν S = - ν 0 ( Δ n n 0 + Δ L S L S ) .
Δ ν C = Δ ν Z - Δ ν S .
Δ ν C = - ν 0 ( Δ L Z L Z + Δ L S L S ) .
Δ ν C 0.
L n = L g n gas + L c n crystal + L w n window + L p n phase ,
L Z = L Z 0 n gas ,
L S = L S 0 n gas ,
Δ L Z = L Z 0 Δ n gas ,
Δ L S = L S 0 Δ n gas .
Δ ν Z = - ν 0 ( Δ n n 0 + L Z 0 Δ n gas L Z 0 n gas ) ,
Δ ν S = - ν 0 ( Δ n n 0 + L S 0 Δ n gas L S 0 n gas ) .
Δ ν C 0.
Δ ν c = - ν 1 ( Δ n 1 n 1 + Δ L 1 L 1 ) + ν 2 ( Δ n 2 n 2 + Δ L 2 L 2 ) ,

Metrics