Abstract

Optical links are traditionally set to transmit maximum power for worst-case loss and consequently to dissipate more power than is required. We describe a technique to minimize power consumption based on the measured bit-error rate (BER) of the link. This technique uses a novel power-negotiation algorithm that optimizes the link power setting to achieve minimum power dissipation for a target BER. A 0.5 μm complementary metal-oxide semiconductor optical transceiver chip was fabricated, and a free-space optical interconnect system was built for validation. The results showed that the algorithm was able to find the optimum power settings for the VCSELs for a target BER and to account for dynamic changes such as variation in the optical loss in the system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
    [CrossRef]
  2. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
    [CrossRef]
  3. A. Shang, F. Tooley, “Digital optical interconnects for networks and computing systems,” J. Lightwave Technol. 18, 2086–2094 (2000).
    [CrossRef]
  4. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol. 19, 1093–1103 (2001).
    [CrossRef]
  5. M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
    [CrossRef]
  6. D. M. Cutrer, K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser—how low a threshold is low enough?” IEEE Photon. Technol. Lett. 7, 4–6 (1995).
    [CrossRef]
  7. L. Zei, K. Petermann, R. Jager, K. J. Ebeling, “Operation range of VCSEL-interconnect links with ‘below-threshold’ biasing,” J. Lightwave Technol. 18, 477–481 (2000).
    [CrossRef]
  8. O. Kibar, D. A. Van Blerkom, C. Fan, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–645 (1999).
    [CrossRef]
  9. J. M. Steininger, E. J. Swanson, “A 500 Mb/s CMOS optical data link receiver integrated circuit,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1986), pp. 60–61, 304.
  10. R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.
  11. G. Held, Data over Wireless Networks: Bluetooth, WAP, and Wireless LANS (McGraw-Hill, 2001), Chap. 6.
  12. P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190.
    [CrossRef]
  13. X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
    [CrossRef]
  14. V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Commun. 17, 451–460 (1999).
    [CrossRef]
  15. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), pp. 155–164.
  16. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), p. 299.
  17. Honeywell International, “Modulating VCSELs,” Honeywell application notes, http://content.honeywell.com/vcsel/publications/app.stm .
  18. K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996).
    [CrossRef]
  19. M. Bruensteiner, G. C. Papen, “Extraction of VCSEL rate-equation parameters for low-bias system simulation,” IEEE J. Sel. Top. Quantum Electron. 5, 487–494 (1999).
    [CrossRef]
  20. L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
    [CrossRef]
  21. N. K. Dutta, “Power penalty due to timing jitter for laser modulated without prebias,” Appl. Phys. Lett. 67, 3230–3232 (1995).
    [CrossRef]
  22. Peregrine Semiconductor Corporation, “UTSi CMOS SOS for mixed signal ICs,” Peregrine Semiconductor Corp. Tech. Doc., http://www.peregrine-semi.com/prd_prodinfo.html .
  23. A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).
  24. Broadcom Corporation, “8-Channel multirate 1.0–3.2-GBPS transceiver,” Product brief, BCM8020, Broadcom Corporation, Irvine, Calif.
  25. Emcore Corporation, “PIN array die 1 × 4 3.125 Gb, S8485-1405” and “Oxide Array Die, 1 × 4 3.125 Gb (U-lot), 8685-1402,”Emcore data sheets (Emcore Corporation, Somerset, N.J.).

2004 (1)

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

2001 (1)

2000 (3)

L. Zei, K. Petermann, R. Jager, K. J. Ebeling, “Operation range of VCSEL-interconnect links with ‘below-threshold’ biasing,” J. Lightwave Technol. 18, 477–481 (2000).
[CrossRef]

A. Shang, F. Tooley, “Digital optical interconnects for networks and computing systems,” J. Lightwave Technol. 18, 2086–2094 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

1999 (4)

1996 (2)

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996).
[CrossRef]

1995 (2)

D. M. Cutrer, K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser—how low a threshold is low enough?” IEEE Photon. Technol. Lett. 7, 4–6 (1995).
[CrossRef]

N. K. Dutta, “Power penalty due to timing jitter for laser modulated without prebias,” Appl. Phys. Lett. 67, 3230–3232 (1995).
[CrossRef]

1991 (1)

F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Abramowitz, M.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), p. 299.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), pp. 155–164.

Ahearn, J. S.

Archer, V. D.

R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.

Brenner, M. H.

Bruensteiner, M.

M. Bruensteiner, G. C. Papen, “Extraction of VCSEL rate-equation parameters for low-bias system simulation,” IEEE J. Sel. Top. Quantum Electron. 5, 487–494 (1999).
[CrossRef]

Calderbank, A. R.

V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Commun. 17, 451–460 (1999).
[CrossRef]

Chandramani, P.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

Chateauneuf, M.

Chen, L. P.

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

Chin, G. M.

R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.

Christensen, M. P.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

Chrostowski, J.

P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190.
[CrossRef]

Cutrer, D. M.

D. M. Cutrer, K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser—how low a threshold is low enough?” IEEE Photon. Technol. Lett. 7, 4–6 (1995).
[CrossRef]

Dutta, N. K.

N. K. Dutta, “Power penalty due to timing jitter for laser modulated without prebias,” Appl. Phys. Lett. 67, 3230–3232 (1995).
[CrossRef]

Ebeling, K. J.

Ekman, J.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

Esener, S. C.

O. Kibar, D. A. Van Blerkom, C. Fan, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–645 (1999).
[CrossRef]

F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Fan, C.

Faucher, J.

Fokken, G. J.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

Gallenberger, R. J.

P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190.
[CrossRef]

Gilbert, B. K.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

Gui, P.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

Haney, M. W.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

Hastings, A.

A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).

Held, G.

G. Held, Data over Wireless Networks: Bluetooth, WAP, and Wireless LANS (McGraw-Hill, 2001), Chap. 6.

Jafarkhani, H.

V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Commun. 17, 451–460 (1999).
[CrossRef]

Jager, R.

Kiamilev, F.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Kibar, O.

Kindt, S.

K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996).
[CrossRef]

Kirk, A. G.

Krishnamoorthy, A. V.

F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Kuznia, C.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

Laprise, E.

Lau, K. Y.

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

D. M. Cutrer, K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser—how low a threshold is low enough?” IEEE Photon. Technol. Lett. 7, 4–6 (1995).
[CrossRef]

Lee, S. H.

F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Liu, Y.

Marchand, P.

F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

McFadden, M. J.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

Milojkovic, P.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. H. Brenner, “Multichip free-space optical interconnection demonstration based on integrated arrays of vertical cavity surface emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

Neumann, R.

P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190.
[CrossRef]

Obermann, K.

K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996).
[CrossRef]

Palacharla, P.

P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190.
[CrossRef]

Papen, G. C.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

M. Bruensteiner, G. C. Papen, “Extraction of VCSEL rate-equation parameters for low-bias system simulation,” IEEE J. Sel. Top. Quantum Electron. 5, 487–494 (1999).
[CrossRef]

Petermann, K.

L. Zei, K. Petermann, R. Jager, K. J. Ebeling, “Operation range of VCSEL-interconnect links with ‘below-threshold’ biasing,” J. Lightwave Technol. 18, 477–481 (2000).
[CrossRef]

K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996).
[CrossRef]

Plant, D. V.

Razavi, K.

Rieve, J.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

Rozier, R.

Shang, A.

Stegun, I. A.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), p. 299.

Steininger, J. M.

J. M. Steininger, E. J. Swanson, “A 500 Mb/s CMOS optical data link receiver integrated circuit,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1986), pp. 60–61, 304.

Swanson, E. J.

J. M. Steininger, E. J. Swanson, “A 500 Mb/s CMOS optical data link receiver integrated circuit,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1986), pp. 60–61, 304.

Swartz, R. G.

R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.

Tarokh, V.

V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Commun. 17, 451–460 (1999).
[CrossRef]

Tooley, F.

Van Blerkom, D. A.

Venditti, M. B.

Vickberg, M.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

Voshchenkov, A. M.

R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.

Wang, X.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit-error-ratio test capability,” J. Lightwave Technol. 22, 546–645 (2004).
[CrossRef]

Wooley, B. A.

R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.

Zei, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. K. Dutta, “Power penalty due to timing jitter for laser modulated without prebias,” Appl. Phys. Lett. 67, 3230–3232 (1995).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Commun. 17, 451–460 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Bruensteiner, G. C. Papen, “Extraction of VCSEL rate-equation parameters for low-bias system simulation,” IEEE J. Sel. Top. Quantum Electron. 5, 487–494 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

D. M. Cutrer, K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser—how low a threshold is low enough?” IEEE Photon. Technol. Lett. 7, 4–6 (1995).
[CrossRef]

K. Obermann, S. Kindt, K. Petermann, “Turn-on jitter in zero-biased single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 31–33 (1996).
[CrossRef]

J. Lightwave Technol. (6)

Proc. IEEE (1)

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, F. Kiamilev, “Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
[CrossRef]

Other (11)

J. M. Steininger, E. J. Swanson, “A 500 Mb/s CMOS optical data link receiver integrated circuit,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1986), pp. 60–61, 304.

R. G. Swartz, B. A. Wooley, A. M. Voshchenkov, V. D. Archer, G. M. Chin, “A monolithic laser driver for optical communications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, 1982), pp. 162–163.

G. Held, Data over Wireless Networks: Bluetooth, WAP, and Wireless LANS (McGraw-Hill, 2001), Chap. 6.

P. Palacharla, J. Chrostowski, R. Neumann, R. J. Gallenberger, “Techniques for accelerated measurement of low bit error rates in computer data links,” in Proceedings of IEEE 14th Annual International Phoenix Conference on Computers and Communications (Institute of Electrical and Electronics Engineers, 1995), pp. 184–190.
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), pp. 155–164.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), p. 299.

Honeywell International, “Modulating VCSELs,” Honeywell application notes, http://content.honeywell.com/vcsel/publications/app.stm .

Peregrine Semiconductor Corporation, “UTSi CMOS SOS for mixed signal ICs,” Peregrine Semiconductor Corp. Tech. Doc., http://www.peregrine-semi.com/prd_prodinfo.html .

A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).

Broadcom Corporation, “8-Channel multirate 1.0–3.2-GBPS transceiver,” Product brief, BCM8020, Broadcom Corporation, Irvine, Calif.

Emcore Corporation, “PIN array die 1 × 4 3.125 Gb, S8485-1405” and “Oxide Array Die, 1 × 4 3.125 Gb (U-lot), 8685-1402,”Emcore data sheets (Emcore Corporation, Somerset, N.J.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

System setup for the power-negotiation algorithm: TX, transmitter; RX, receiver; PRBS, pseudorandom bit sequence.

Fig. 2
Fig. 2

BER surface as a function of transmitter power setting (Ion and Ib), showing the BER valley floor where the minimum BER exists for an optical link.

Fig. 3
Fig. 3

BER contour, showing the dependency of the channel BER on the power setting (Ion and Ib) and the BER valley floor that corresponds to the optimum power setting. Bτ is unitless, Ith is in milliamperes, and γ is in inverse milliamperes.

Fig. 4
Fig. 4

Effect of Bτ on BER contour: Bτ affects only the slopes of contours for below-threshold biasing. Units are the same as for Fig. 3.

Fig. 5
Fig. 5

Effect of γ on BER contour: Changing γ causes the contour to shift vertically, and a lower Ion is required for the link with a higher γ to yield the same error rate. Units are the same as for Fig. 3.

Fig. 6
Fig. 6

Effect of Ith on BER contour: Changing Ith causes the contour to shift in both horizontal and vertical directions. Increasing Ith results in increasing of the optimum Ion and Ib. Units are the same as for Fig. 3.

Fig. 7
Fig. 7

Steps show the power-on optimization algorithm converging to the optimum power setting when the system is powered up.

Fig. 8
Fig. 8

Steps show the real-time correction algorithm fine-tuning the power setting during data transmission. Dashed curves, original system setup; solid curves, the new BER contour after the system’s operating parameters have been changed.

Fig. 9
Fig. 9

Power-negotiation algorithm flow chart showing details of the implementation of both the power-on optimization algorithm and the real-time correction algorithm.

Fig. 10
Fig. 10

Schematic of a current-mode digital-to-analog converter.

Fig. 11
Fig. 11

A close match between simulation and measured data can be observed for DAC output current during a sweep of the digital power setting. ASIC, application-specific integrated circuit.

Fig. 12
Fig. 12

Building blocks of the optical receiver design: two DACs, two preamplifiers, a three-stage fully differential postamplifier, and a CML driver.

Fig. 13
Fig. 13

Schematic of a transimpedance amplifier design, showing the power-down transistor and three digital gain-control transistors suitable for a wide dynamic range of current input.

Fig. 14
Fig. 14

Micrograph of a 1 × 4 CMOS optical transceiver IC.

Fig. 15
Fig. 15

Micrograph of the chip-on-board packaging, showing that two photodetector arrays are attached to the transceiver chip by the flip-chip process and the hybridized CMOS chip is wire-bonded to the carrier board.

Fig. 16
Fig. 16

Overview of the demonstration system, showing the integration of two carrier boards, a Virtex II Pro FPGA, and the free-space optics mounted on micropositioning stages.

Fig. 17
Fig. 17

Block diagram of the test setup overview. The power-negotiation algorithm is implemented in a FPGA and communicates with the optical transceiver ICs through the embedded RocketIO serial transceivers at a data rate of 1.8 Gbits/s.

Fig. 18
Fig. 18

Eye diagram of the receiver output at 2 Gbits/s during the link test.

Fig. 19
Fig. 19

Ideal BER contour and experimental power settings showing the power setting of each iteration the power-on algorithm steps through during testing for a 1.8 Gbit/s optical link. For a target BER of 3 × 10−9, the algorithm converges to the threshold-biasing point (Ib = 0.75 mA) at the BER valley floor.

Fig. 20
Fig. 20

VCSEL optical power output versus current; 0.75 mA of the threshold current is extrapolated.

Fig. 21
Fig. 21

Eye diagrams of the optical receiver output at 1.8 Gbits/s with the VCSEL working at a power setting of Ion = 2.75 mA and with (a) Ib = 0.75 mA (threshold biasing) and (b) Ib = 0.25 mA (below-threshold biasing). Significant jitter can be observed at the rising edge in (b), which confirms that threshold biasing minimizes data-dependent jitter and results in a better performance for the optical link.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P e = 1 4 [ erfc ( I 1 - I D 2 σ 1 ) + erfc ( I D - I 0 2 σ 0 ) ] ,
erfc ( x ) = 2 π x exp ( - u 2 ) d u .
P e = 0.5 erfc ( Q / 2 ) ,
P e = 0.5 erfc [ γ ( I on - I b ) 2 ] ,
γ = η α R σ 0 + σ 1 = η α R 2 σ .
P e = 1 2 erfc [ γ ( I on - I th ) h ( B t d , max ) 2 ] ,
t d , max = τ ln ( I on - I b I on - I th ) = τ F ,
h ( B t ) = ½ [ 1 + cos ( π B t ) ] .
P e = 1 2 erfc [ γ ( I on - I th ) cos 2 ( π B τ F / 2 ) 2 ] .
P elec 0.5 V on ( I on + I b ) ,

Metrics