Abstract

We present a large-area electro-optic Fabry–Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficiency of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 μm is demonstrated. By comparing distance tuning of the cavity with wavelength tuning, an effective electro-optic coefficient of −7 pm/V is measured.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Okada, S. Shimizu, S. Ieiri, “Tuning of a dye laser by a birefringent Fabry–Perot etalon,” Appl. Opt. 14, 917–922 (1975).
    [CrossRef] [PubMed]
  2. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, 1986).
  3. E. I. Gordon, J. D. Ridgen, “The Fabry-Perot electrooptic modulator,” Bell Syst. Tech. J. 42, 155–179 (1963).
    [CrossRef]
  4. T. Kurokawa, S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
    [CrossRef]
  5. M. Sano, M. Takeda, S. Fukushima, T. Kurokawa, “Real-time holographic vibrometry with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 7523–7531 (1998).
    [CrossRef]
  6. K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
    [CrossRef]
  7. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
    [CrossRef] [PubMed]
  8. C. A. Eldering, S. T. Kowel, A. Knoesen, “Electrically induced transmissivity modulation in polymeric thin film Fabry–Perot etalons,” Appl. Opt. 28, 4442–4445 (1989).
    [CrossRef] [PubMed]
  9. K. Harada, M. Itoh, T. Yatagai, “Development of spatial light modulators with nonlinear organic materials,” Opt. Rev. 3, 440–442 (1996).
    [CrossRef]
  10. R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
    [CrossRef]
  11. R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
    [CrossRef]
  12. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]
  13. E. Hecht, Optics, 3rd ed. (Addison-Wesley, 1998).
  14. C. A. Eldering, S. T. Kowel, M. A. Mortazavi, P. F. Brinkley, “Electrooptic polymer materials and devices for global optical interconnects,” Appl. Opt. 29, 1142–1149 (1990).
    [CrossRef] [PubMed]
  15. H. D. Polster, “Multiple beam interferometry,” Appl. Opt. 8, 522–525 (1969).
  16. J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
    [CrossRef]
  17. H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
    [CrossRef]

2004 (1)

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

2003 (1)

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

2001 (1)

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
[CrossRef]

1998 (1)

1996 (1)

K. Harada, M. Itoh, T. Yatagai, “Development of spatial light modulators with nonlinear organic materials,” Opt. Rev. 3, 440–442 (1996).
[CrossRef]

1993 (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

1992 (1)

T. Kurokawa, S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[CrossRef]

1990 (2)

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

C. A. Eldering, S. T. Kowel, M. A. Mortazavi, P. F. Brinkley, “Electrooptic polymer materials and devices for global optical interconnects,” Appl. Opt. 29, 1142–1149 (1990).
[CrossRef] [PubMed]

1989 (1)

1975 (1)

1969 (1)

H. D. Polster, “Multiple beam interferometry,” Appl. Opt. 8, 522–525 (1969).

1963 (1)

E. I. Gordon, J. D. Ridgen, “The Fabry-Perot electrooptic modulator,” Bell Syst. Tech. J. 42, 155–179 (1963).
[CrossRef]

Apitz, D.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

Benter, N.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Bertram, R. P.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Bethke, S. J.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

Blank, H.

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Brinkley, P. F.

Buse, K.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Eldering, C. A.

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Fukushima, S.

M. Sano, M. Takeda, S. Fukushima, T. Kurokawa, “Real-time holographic vibrometry with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 7523–7531 (1998).
[CrossRef]

T. Kurokawa, S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[CrossRef]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Gordon, E. I.

E. I. Gordon, J. D. Ridgen, “The Fabry-Perot electrooptic modulator,” Bell Syst. Tech. J. 42, 155–179 (1963).
[CrossRef]

Grote, J. G.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
[CrossRef]

Grubb, S. G.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

Hagen, R.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Hampsch, H. L.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

Harada, K.

K. Harada, M. Itoh, T. Yatagai, “Development of spatial light modulators with nonlinear organic materials,” Opt. Rev. 3, 440–442 (1996).
[CrossRef]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley, 1998).

Hernandez, G.

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, 1986).

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Hopkins, F. K.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
[CrossRef]

Ieiri, S.

Itoh, M.

K. Harada, M. Itoh, T. Yatagai, “Development of spatial light modulators with nonlinear organic materials,” Opt. Rev. 3, 440–442 (1996).
[CrossRef]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Knoesen, A.

Kostromine, S. G.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Kowel, S. T.

Kurokawa, T.

M. Sano, M. Takeda, S. Fukushima, T. Kurokawa, “Real-time holographic vibrometry with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 7523–7531 (1998).
[CrossRef]

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

T. Kurokawa, S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[CrossRef]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Mortazavi, M. A.

Nelson, R. L.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
[CrossRef]

Okada, M.

Polster, H. D.

H. D. Polster, “Multiple beam interferometry,” Appl. Opt. 8, 522–525 (1969).

Ridgen, J. D.

E. I. Gordon, J. D. Ridgen, “The Fabry-Perot electrooptic modulator,” Bell Syst. Tech. J. 42, 155–179 (1963).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Sano, M.

Shimizu, S.

Soergel, E.

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

Takeda, M.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Torkelson, J. M.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

Tsuda, H.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Yatagai, T.

K. Harada, M. Itoh, T. Yatagai, “Development of spatial light modulators with nonlinear organic materials,” Opt. Rev. 3, 440–442 (1996).
[CrossRef]

Zetts, J. S.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
[CrossRef]

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

E. I. Gordon, J. D. Ridgen, “The Fabry-Perot electrooptic modulator,” Bell Syst. Tech. J. 42, 155–179 (1963).
[CrossRef]

J. Appl. Phys. (2)

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen, S. G. Kostromine, “Strong electro-optic effect in electrically poled photoaddressable polymers,” J. Appl. Phys. 94, 6208–6210 (2003).
[CrossRef]

J. Lightwave Technol. (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Opt. Eng. (1)

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40, 2464–2473 (2001).
[CrossRef]

Opt. Quantum Electron. (1)

T. Kurokawa, S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[CrossRef]

Opt. Rev. (1)

K. Harada, M. Itoh, T. Yatagai, “Development of spatial light modulators with nonlinear organic materials,” Opt. Rev. 3, 440–442 (1996).
[CrossRef]

Phys. Rev. E (1)

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen, S. G. Kostromine, “Increased thermal stability of a poled electro-optic polymer using high-molarmass fractions,” Phys. Rev. E 70, 041802 (2004).
[CrossRef]

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Other (3)

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, 1986).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

E. Hecht, Optics, 3rd ed. (Addison-Wesley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the layout of the Fabry–Perot electro-optic modulator; wavelengths of the tunable laser: 1450–1590 nm; the air gap dair is controlled with the aid of a piezoelectric translation stage.

Fig. 2
Fig. 2

Chemical structure of the investigated polymer.

Fig. 3
Fig. 3

(a) Normalized transmission T/Tmax, (b) derivative of the normalized transmission (ΔTdair)Tmax−1, (c) electro-optic signal ΔT/Tmax for an alternating voltage Up of 5.6 V, also normalized to the highest transmission intensity plotted against the width of the air gap dair.

Fig. 4
Fig. 4

Frequency dependence of the maximum of the transmission changes ΔT(dair), where dair is the width of the air gap.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ U det Δ d air Δ T Δ d air
Δ U det Δ U P Δ T Δ U P
n air Δ d air = d P Δ n P ,
Δ n P = - 1 2 n P 3 r 13 Δ U P d P ,
r 13 = - 2 n P 3 ( Δ T Δ U P ) ( Δ T Δ d air ) - 1
Δ U P = Δ U ɛ P d P i d i ɛ i ,
F = γ Δ γ ,
U π = λ 2 n P 3 r 13 π F ,

Metrics