Abstract

A glass capillary with an inner metal coating is proposed to be used as soft-x-ray fiber optics in medical applications. Based on the results of theoretical calculations, nickel was chosen as the coating material for x rays radiated from a conventional x-ray tube. A nickel-coated capillary was fabricated by electroless deposition, and focusing and collimating effects were observed from measurements of the transmission efficiency of soft x rays. The transmission of a nickel-coated capillary with an inner diameter of 0.53 mm and a length of 300 mm was 10%, which is approximately double that of an uncoated glass capillary.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–287 (1990).
    [CrossRef]
  2. V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
    [CrossRef]
  3. M. A. Kumakhov, “Status of x-ray capillary optics,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 87–102 (1995).
  4. R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
    [CrossRef]
  5. L. Marton, “X-ray fiber optics,” Appl Phys. Lett. 9, 194–195 (1966).
    [CrossRef]
  6. D. R. Parsignault, A. S. Krieger, “X-ray fiber optics from 60 eV to 10 keV,” in X-Ray Detector Physics and Applications, R. B. Hoover, ed., Proc. SPIE1736, 190–200 (1992).
    [CrossRef]
  7. C. A. MacDonald, “Capillary Optics,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2000), Vol. III.
  8. G. Hirsch, “Metal capillary optics: novel fabrication methods and characterization,” X-ray Spectrom. 32, 229–238 (2003).
    [CrossRef]
  9. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  10. “X-ray interactions with matter,” http://www-cxro.lbl.gov/optical_constants/ .
  11. S. V. Kukhlevsky, F. Flora, A. Marinai, K. Negrea, L. Palladino, A. Reale, G. Tomassetti, A. Ritucci, G. Nyitray, L. Kozma, “Diffraction of x rays in capillary optics,” Appl. Opt. 39, 1059–1063 (2000).
    [CrossRef]
  12. A. Michette, Optical System for Soft X-Rays (Plenum, 1986).
    [CrossRef]
  13. A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
    [CrossRef]
  14. M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [CrossRef]

2003 (1)

G. Hirsch, “Metal capillary optics: novel fabrication methods and characterization,” X-ray Spectrom. 32, 229–238 (2003).
[CrossRef]

2000 (1)

1996 (1)

M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

1993 (1)

A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
[CrossRef]

1990 (1)

M. A. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–287 (1990).
[CrossRef]

1989 (2)

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

1966 (1)

L. Marton, “X-ray fiber optics,” Appl Phys. Lett. 9, 194–195 (1966).
[CrossRef]

Arkdiev, V. A.

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

Chertov, Yu. P.

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

De Silvestri, S.

M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Flora, F.

Gannot, I.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
[CrossRef]

Hirsch, G.

G. Hirsch, “Metal capillary optics: novel fabrication methods and characterization,” X-ray Spectrom. 32, 229–238 (2003).
[CrossRef]

Ho, A. H.

A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
[CrossRef]

Hongo, A.

Ilev, I. K.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
[CrossRef]

Jennings, R. J.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
[CrossRef]

Khodeev, I. A.

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

Kolomitsev, A. I.

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

Kozma, L.

Krieger, A. S.

D. R. Parsignault, A. S. Krieger, “X-ray fiber optics from 60 eV to 10 keV,” in X-Ray Detector Physics and Applications, R. B. Hoover, ed., Proc. SPIE1736, 190–200 (1992).
[CrossRef]

Kukhlevsky, S. V.

Kumakhov, M. A.

M. A. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–287 (1990).
[CrossRef]

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

M. A. Kumakhov, “Status of x-ray capillary optics,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 87–102 (1995).

MacDonald, C. A.

C. A. MacDonald, “Capillary Optics,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2000), Vol. III.

Marinai, A.

Marton, L.

L. Marton, “X-ray fiber optics,” Appl Phys. Lett. 9, 194–195 (1966).
[CrossRef]

Matsuura, Y.

Michette, A.

A. Michette, Optical System for Soft X-Rays (Plenum, 1986).
[CrossRef]

Mitra, K.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
[CrossRef]

Miyagi, M.

Negrea, K.

Nisoli, M.

M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Nyitray, G.

Palladino, L.

Parsignault, D. R.

D. R. Parsignault, A. S. Krieger, “X-ray fiber optics from 60 eV to 10 keV,” in X-Ray Detector Physics and Applications, R. B. Hoover, ed., Proc. SPIE1736, 190–200 (1992).
[CrossRef]

Piestrup, M. A.

A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
[CrossRef]

Ponomarev, I. Yu.

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

Reale, A.

Ritucci, A.

Saito, M.

Shakparonov, I. M.

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

Silzer, R. M.

A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
[CrossRef]

Skopik, D. M.

A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
[CrossRef]

Svelto, O.

M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Tomassetti, G.

Waynant, R. W.

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
[CrossRef]

Appl Phys. Lett. (1)

L. Marton, “X-ray fiber optics,” Appl Phys. Lett. 9, 194–195 (1966).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. H. Ho, M. A. Piestrup, R. M. Silzer, D. M. Skopik, “Surface roughness effects on cylindrical grazing incidence x-ray optics for transition radation,” J. Appl. Phys. 74, 5320–5326 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nucl. Instrum. Methods B (1)

M. A. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–287 (1990).
[CrossRef]

Sov. Phys. Usp. (1)

V. A. Arkdiev, A. I. Kolomitsev, M. A. Kumakhov, I. Yu. Ponomarev, I. A. Khodeev, Yu. P. Chertov, I. M. Shakparonov, “Wide-band x-ray optics with large aperture,” Sov. Phys. Usp. 32, 271–276 (1989).
[CrossRef]

X-ray Spectrom. (1)

G. Hirsch, “Metal capillary optics: novel fabrication methods and characterization,” X-ray Spectrom. 32, 229–238 (2003).
[CrossRef]

Other (6)

A. Michette, Optical System for Soft X-Rays (Plenum, 1986).
[CrossRef]

M. A. Kumakhov, “Status of x-ray capillary optics,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 87–102 (1995).

R. W. Waynant, I. K. Ilev, K. Mitra, I. Gannot, R. J. Jennings, “Transmission characteristics of an all-optical-waveguide biomedical system for x-ray delivery,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 121–128 (2002).
[CrossRef]

“X-ray interactions with matter,” http://www-cxro.lbl.gov/optical_constants/ .

D. R. Parsignault, A. S. Krieger, “X-ray fiber optics from 60 eV to 10 keV,” in X-Ray Detector Physics and Applications, R. B. Hoover, ed., Proc. SPIE1736, 190–200 (1992).
[CrossRef]

C. A. MacDonald, “Capillary Optics,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2000), Vol. III.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Radiation spectrum for a soft-x-ray tube.

Fig. 2
Fig. 2

Calculated loss spectra of various capillary optics in the soft-x-ray domain. The length of the capillaries was 100 mm, and the bore diameter was 0.53 mm.

Fig. 3
Fig. 3

Theoretical reflectance of metals and silica at a wavelength of 0.25 nm in the soft-x-ray domain.

Fig. 4
Fig. 4

Atomic-force microscope images of (a) an uncoated glass tube and (b) a nickel-coated glass tube. Surface roughness, σ rms.

Fig. 5
Fig. 5

Experimental setup for measurement of the transmission characteristics of capillary optics.

Fig. 6
Fig. 6

Measured x-ray output intensities from bent capillaries.

Fig. 7
Fig. 7

Theoretical and estimated losses of nickel and silica capillaries. The upper solid curve was fitted to the measured data.

Tables (1)

Tables Icon

Table 1 Measured Losses and Gain of Capillary Optics with a Length of 300 mm and an Inner Diameter of 0.53 mm

Metrics