Abstract

Nb2O5 films were deposited by a reactive magnetron sputtering technique. The average refractive index was found to increase with the rise of substrate temperature. Modulated interference transmittance spectra were observed in the two-step films, which were prepared by stopping the deposition process in the middle of the designed sputtering time, and then, after a full cooling down to room temperature, starting the same deposition process again to complete the whole preparation of the films. A linearly graded-index model was used to explain the interference behavior. It was proved that the two-step film method was sensitive to the small inhomogeneity in the films. We also suggest that the inhomogeneity of sputtered films can be minimized by controlling the substrate temperature at a constant value.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition

Hyun Ju Cho and Chang Kwon Hwangbo
Appl. Opt. 35(28) 5545-5552 (1996)

Characterization of AlF3 thin films at 193 nm by thermal evaporation

Cheng-Chung Lee, Ming-Chung Liu, Masaaki Kaneko, Kazuhide Nakahira, and Yuuichi Takano
Appl. Opt. 44(34) 7333-7338 (2005)

Microstructure-related properties at 193 nm of MgF2 and GdF3 films deposited by a resistive-heating boat

Ming-Chung Liu, Cheng-Chung Lee, Masaaki Kaneko, Kazuhide Nakahira, and Yuuichi Takano
Appl. Opt. 45(7) 1368-1374 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription