Abstract

Nb2O5 films were deposited by a reactive magnetron sputtering technique. The average refractive index was found to increase with the rise of substrate temperature. Modulated interference transmittance spectra were observed in the two-step films, which were prepared by stopping the deposition process in the middle of the designed sputtering time, and then, after a full cooling down to room temperature, starting the same deposition process again to complete the whole preparation of the films. A linearly graded-index model was used to explain the interference behavior. It was proved that the two-step film method was sensitive to the small inhomogeneity in the films. We also suggest that the inhomogeneity of sputtered films can be minimized by controlling the substrate temperature at a constant value.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Shvartsburg, G. Petite, P. Hecquet, “Broadband antireflection properties of thin heterogeneous dielectric films,” J. Opt. Soc. Am. A 17, 2267–2271 (2000).
    [CrossRef]
  2. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
    [CrossRef]
  3. A. C. van Popta, M. M. Hawkeye, J. C. Sit, M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
    [CrossRef] [PubMed]
  4. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  5. M. Harris, H. A. Macleod, A. Ogura, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
    [CrossRef]
  6. O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
    [CrossRef]
  7. G. Parjadis de Larivière, J. M. Frigerio, J. Rivory, F. Abelès, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry,” Appl. Opt. 31, 6056–6061 (1992).
    [CrossRef]
  8. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23, 3567–3570 (1984).
    [CrossRef] [PubMed]
  9. H. A. Macleoded., “Basic theory,” in Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001), Chap. 2, pp. 12–85.
    [CrossRef]
  10. Y. Song, T. Sakurai, “High-rate, low-temperature radical-assisted sputtering coater and its applications for depositing high-performance optical filters,” Vaccum 74, 409–415 (2004).
    [CrossRef]
  11. Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
    [CrossRef]
  12. M. F. Al-Kuhaili, “Optical properties of scandium oxide films prepared by electron beam evaporation,” Thin Solid Films 426, 178–185 (2003).
    [CrossRef]

2004 (3)

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Y. Song, T. Sakurai, “High-rate, low-temperature radical-assisted sputtering coater and its applications for depositing high-performance optical filters,” Vaccum 74, 409–415 (2004).
[CrossRef]

A. C. van Popta, M. M. Hawkeye, J. C. Sit, M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
[CrossRef] [PubMed]

2003 (1)

M. F. Al-Kuhaili, “Optical properties of scandium oxide films prepared by electron beam evaporation,” Thin Solid Films 426, 178–185 (2003).
[CrossRef]

2000 (2)

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

A. B. Shvartsburg, G. Petite, P. Hecquet, “Broadband antireflection properties of thin heterogeneous dielectric films,” J. Opt. Soc. Am. A 17, 2267–2271 (2000).
[CrossRef]

1997 (1)

1992 (1)

1984 (1)

1982 (1)

1979 (1)

M. Harris, H. A. Macleod, A. Ogura, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Abelès, F.

Albrand, G.

Al-Kuhaili, M. F.

M. F. Al-Kuhaili, “Optical properties of scandium oxide films prepared by electron beam evaporation,” Thin Solid Films 426, 178–185 (2003).
[CrossRef]

Borgogno, J. P.

Brett, M. J.

Dobrowolski, J. A.

Flory, F.

Frach, P.

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Frigerio, J. M.

Glöß, D.

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Goedicke, K.

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Harris, M.

M. Harris, H. A. Macleod, A. Ogura, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Hawkeye, M. M.

Hecquet, P.

Kikuchi, K.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Lazarides, B.

Macleod, H. A.

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23, 3567–3570 (1984).
[CrossRef] [PubMed]

M. Harris, H. A. Macleod, A. Ogura, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Maruta, K.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Matsumoto, S.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Matusita, A.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Modes, T.

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Ogura, A.

M. Harris, H. A. Macleod, A. Ogura, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Parjadis de Larivière, G.

Pelletier, E.

Petite, G.

Rivory, J.

Roche, P.

Sahm, H.

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Saisho, S.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Sakurai, T.

Y. Song, T. Sakurai, “High-rate, low-temperature radical-assisted sputtering coater and its applications for depositing high-performance optical filters,” Vaccum 74, 409–415 (2004).
[CrossRef]

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Schmitt, B.

Shvartsburg, A. B.

Sit, J. C.

Song, Y.

Y. Song, T. Sakurai, “High-rate, low-temperature radical-assisted sputtering coater and its applications for depositing high-performance optical filters,” Vaccum 74, 409–415 (2004).
[CrossRef]

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Sullivan, B. T.

Tikhonravov, A. V.

Trubetskov, M. K.

van Popta, A. C.

Zywitzki, O.

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Surf. Coat. Technol. (1)

O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004).
[CrossRef]

Thin Solid Films (2)

M. F. Al-Kuhaili, “Optical properties of scandium oxide films prepared by electron beam evaporation,” Thin Solid Films 426, 178–185 (2003).
[CrossRef]

M. Harris, H. A. Macleod, A. Ogura, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Vaccum (2)

Y. Song, T. Sakurai, “High-rate, low-temperature radical-assisted sputtering coater and its applications for depositing high-performance optical filters,” Vaccum 74, 409–415 (2004).
[CrossRef]

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vaccum 59, 755–763 (2000).
[CrossRef]

Other (1)

H. A. Macleoded., “Basic theory,” in Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001), Chap. 2, pp. 12–85.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) XRD pattern of the Nb2O5 film with a sputtering time of 3000 s on a heated substrate, (b) AFM surface morphology of the Nb2O5 film with a sputtering time of 3000 s on an unheated substrate, (c) cross-sectional microstructure of the two-step film on an unheated substrate.

Fig. 2
Fig. 2

Measured and calculated transmittance of the Nb2O5 films on unheated substrates with sputtering times of 150, 1200, 2100, and 3000 s, respectively.

Fig. 3
Fig. 3

(a) Average refractive index n ¯ of Nb2O5 films at wavelengths of 550 and 700 nm versus sputtering time, (b) substrate temperature versus sputtering time, (c) n ¯ of the films on heated and unheated substrates with sputtering times of 150 and 3000 s.

Fig. 4
Fig. 4

(a) Measured and (b) simulated transmittance of the two-step film on an unheated substrate, (c) linearly graded model for the two-step film.

Fig. 5
Fig. 5

Transmittance of two-step films on heated and unheated substrates.

Fig. 6
Fig. 6

Reflectance of the films with 3000 s sputtering time.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( m ) = n ¯ + Δ n [ 2 m - ( N + 1 ) ] / 2 N .
R λ = ( n 0 n L 2 - n H 2 n s n 0 n L 2 + n H 2 n s ) 2 ,
R λ / 2 = ( n 0 - n s n 0 + n s ) 2 ,

Metrics