Abstract

The optical properties and surface morphologies of sputtering films both without and with use of the ion-assisted deposition (IAD) technique are investigated and compared. Optimal antireflection (AR) coating films with SiO2/Nb2O5 layers, which are grown at 80 °C with a 15 cm distance between target and substrate, 55 SCCM oxygen flow (SCCM denotes cubic centimeters per minute at STP), and 1250 W magnetron sputtering power with use of the IAD technique, are used to study the optical performance. By using an atomic force microscope to investigate the surface of the sputtered Nb2O5 films, we find that the films’ roughness is 0.185 nm. On a flexible hardness polycarbonate (HPC) substrate with the multilayer AR films, the peak transmittances measured in the visible range are 95.89% and 93.40%, respectively, for coatings with and without use of the IAD sputtering technology. These results are better than those measured with a bare HPC substrate (91.25%) and are well above the commercial liquid-crystal display standard (90%) and flexible application.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
    [CrossRef]
  2. S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
    [CrossRef]
  3. H. A. Macleod, Thin Film Optical Filters,3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  4. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
    [CrossRef] [PubMed]
  5. J. D. Targove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. Leavitt, L. C. McIntyre, “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3738 (1987).
    [CrossRef] [PubMed]
  6. D. A. Glocker, “Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN,” J. Vac. Sci. Technol. A 11, 2989–2993 (1993).
    [CrossRef]
  7. D. T. Wei, H. R. Kaufman, C. C. Lee, Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, 1995), Chap. 6.
  8. C.-C. Lee, C.-L. Tien, J.-C. Hsu, “Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering,” Appl. Opt. 41, 2043–2047 (2002).
    [CrossRef] [PubMed]
  9. J.-C. Hsu, C.-C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171–1176 (1998).
    [CrossRef]
  10. J. R. McNeil, A. C. Barron, S. R. Wilson, W. C. Herrmann, “Ion-assisted deposition of optical thin films: low-energy vs. high-energy bombardment,” Appl. Opt. 23, 552–556 (1984).
    [CrossRef]
  11. F. A. Smidt, “Use of ion beam assisted deposition to modify the microstructure and properties of thin films,” Int. Mater. Rev. 35, 61–66 (1990).
    [CrossRef]
  12. J.-J. Ho, C. Y. Chen, “Power effects in indium zinc oxide thin films for organic light-emitting devices on flexible applications,” J. Electrochem. Soc. 152, G57–G61 (2005).
    [CrossRef]
  13. G. Odian, Principles of Polymerization, 2nd ed. (Wiley-Interscience, 1981).

2005 (1)

J.-J. Ho, C. Y. Chen, “Power effects in indium zinc oxide thin films for organic light-emitting devices on flexible applications,” J. Electrochem. Soc. 152, G57–G61 (2005).
[CrossRef]

2003 (1)

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

2002 (1)

1998 (1)

1993 (1)

D. A. Glocker, “Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN,” J. Vac. Sci. Technol. A 11, 2989–2993 (1993).
[CrossRef]

1990 (2)

F. A. Smidt, “Use of ion beam assisted deposition to modify the microstructure and properties of thin films,” Int. Mater. Rev. 35, 61–66 (1990).
[CrossRef]

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

1987 (1)

1984 (1)

1983 (1)

Barnik, M. I.

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

Barron, A. C.

Belayev, S. V.

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

Chen, C. Y.

J.-J. Ho, C. Y. Chen, “Power effects in indium zinc oxide thin films for organic light-emitting devices on flexible applications,” J. Electrochem. Soc. 152, G57–G61 (2005).
[CrossRef]

Fünfschilling, J.

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

Glocker, D. A.

D. A. Glocker, “Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN,” J. Vac. Sci. Technol. A 11, 2989–2993 (1993).
[CrossRef]

Herrmann, W. C.

Ho, J.-J.

J.-J. Ho, C. Y. Chen, “Power effects in indium zinc oxide thin films for organic light-emitting devices on flexible applications,” J. Electrochem. Soc. 152, G57–G61 (2005).
[CrossRef]

Hsu, J.-C.

Kaufman, H. R.

D. T. Wei, H. R. Kaufman, C. C. Lee, Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, 1995), Chap. 6.

Konijin, H.

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

Kuppens, S.

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

Leavitt, J.

Lee, C. C.

D. T. Wei, H. R. Kaufman, C. C. Lee, Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, 1995), Chap. 6.

Lee, C.-C.

Lehan, J. P.

Lingg, L. J.

Macleod, H. A.

Malimoneko, N. V.

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

Martin, P. J.

Martynov, Y.

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

McIntyre, L. C.

McNeil, J. R.

Netterfield, R. P.

Odian, G.

G. Odian, Principles of Polymerization, 2nd ed. (Wiley-Interscience, 1981).

Pfeffer, N.

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

Sainty, C. G.

Schadt, M.

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

Schmitt, K.

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

Smidt, F. A.

F. A. Smidt, “Use of ion beam assisted deposition to modify the microstructure and properties of thin films,” Int. Mater. Rev. 35, 61–66 (1990).
[CrossRef]

Targove, J. D.

Tien, C.-L.

Timmers, W.

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

Wei, D. T.

D. T. Wei, H. R. Kaufman, C. C. Lee, Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, 1995), Chap. 6.

Wilson, S. R.

Appl. Opt. (5)

Int. Mater. Rev. (1)

F. A. Smidt, “Use of ion beam assisted deposition to modify the microstructure and properties of thin films,” Int. Mater. Rev. 35, 61–66 (1990).
[CrossRef]

J. Electrochem. Soc. (1)

J.-J. Ho, C. Y. Chen, “Power effects in indium zinc oxide thin films for organic light-emitting devices on flexible applications,” J. Electrochem. Soc. 152, G57–G61 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. A. Glocker, “Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN,” J. Vac. Sci. Technol. A 11, 2989–2993 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, K. Schmitt, “Large aperture polarized light source and novel liquid crystal display operating modes,” Jpn. J. Appl. Phys. 29, L634–L637 (1990).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (1)

Y. Martynov, H. Konijin, N. Pfeffer, S. Kuppens, W. Timmers, “High-efficiency slim LED backlight system with mixing light guide,” SID Int. Symp. Digest Tech. Papers 34, 1259–1261 (2003).
[CrossRef]

Other (3)

H. A. Macleod, Thin Film Optical Filters,3rd ed. (Institute of Physics, 2001).
[CrossRef]

D. T. Wei, H. R. Kaufman, C. C. Lee, Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, 1995), Chap. 6.

G. Odian, Principles of Polymerization, 2nd ed. (Wiley-Interscience, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of sputtering equipment with IAD and monitoring of the thin films. D.V.M., digital volt meter.

Fig. 2
Fig. 2

Deposition rate of Nb2O5 film and the corresponding transmittance as a function of the distance between the target and the substrate.

Fig. 3
Fig. 3

Plasma powers of dc sputtering with the IAD system and the corresponding transmittance as a function of the oxygen flow in the Nb2O5 film deposition at a 15 cm target–substrate distance.

Fig. 4
Fig. 4

Three-dimensional AFM image of the Nb2O5 films by a dc sputtering system without IAD technology.

Fig. 5
Fig. 5

Three-dimensional AFM image of the Nb2O5 films by a dc sputtering system with IAD technology.

Fig. 6
Fig. 6

SEM cross-sectional views of the (a) SiO2 and (b) Nb2O5 films by a sputtering system with IAD technology sputtered to about 900 nm thickness.

Fig. 7
Fig. 7

Design of the four-layer AR film structure coatings on a flexible HPC substrate (with 0.55 mm thickness and 30 mm × 30 mm dimensions).

Fig. 8
Fig. 8

Comparison of the transmittances (in the visible range) of the four-layer AR coating designs coated with and without IAD technology and uncoated four-layer AR coatings on a flexible HPC substrate.

Metrics