Abstract

We report the results of noise source investigations and stability tests in both dual- and single-beam Fourier-transform near-infrared operation. The noise sources are divided into two parts: intrinsic and extrinsic. The intrinsic noise sources, which include detector system noise, are common for both modes of operation. The extrinsic sources, which include variations in ambient conditions (room temperature, atmospheric gaseous components, and source scintillations), are shown to be smaller in dual-beam operation than in single-beam operation by a factor of 2–10. The results are based on interferograms measured in specified time intervals. The root-mean-square values are calculated at each retardation point. The values obtained near the centerburst and average values obtained for the dual-beam operation are compared with the intrinsic noise value obtained for single-beam operation. The dual-beam advantage is observed in both open-beam and liquid cell measurements, and it corresponds well with earlier results based on multivariate calibration techniques applied on aqueous solutions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Jensen, J. Bak, “Measurements of urea and glucose in aqueous solutions with dual-beam near-infrared Fourier transform spectroscopy,” Appl. Spectrosc. 56, 1593–1599 (2002).
    [CrossRef]
  2. P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
    [CrossRef]
  3. S. Clausen, L. H. Sørensen, “Measurements of single moving particle temperature with an FT-IR spectrometer,” Appl. Spectrosc. 50, 1103–1111 (1996).
    [CrossRef]
  4. P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).
  5. C. P. Tripp, M. L. Hair, “Transmission infrared spectra of adsorbed polymers using a dual-beam FT-IR instrument,” Appl. Spectrosc. 46, 100–106 (1992).
    [CrossRef]
  6. L. Genzel, H. R. Chandrasekhar, J. Kuhl, “Double-beam Fourier spectroscopy with two inputs and two outputs,” Opt. Commun. 18, 381–386 (1976).
    [CrossRef]
  7. G. A. Vanasse, R. E. Murphy, F. H. Cook, “Double-beaming technique in Fourier spectroscopy,” Appl. Opt. 15, 290–291 (1976).
    [CrossRef] [PubMed]
  8. T. F. Zehnphennig, O. Shepherd, S. Rappaport, W. P. Reidy, G. Vanasse, “Background suppression in double-beam interferometry,” Appl. Opt. 18, 1996–2002 (1979).
    [CrossRef]
  9. H. Krenn, I. Roshger, G. Bauer, “Dual-beam interferometer for optical difference measurements,” Appl. Opt. 23, 3065–3074 (1984).
    [CrossRef] [PubMed]
  10. J.-M. Theriault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999).
    [CrossRef]
  11. J.-M. Theriault, E. Puckrin, F. Bouffard, B. Dery, “Passive remote monitoring of chemical vapors by differential Fourier-transform infrared radiometry results at a range of 1.5 km,” Appl. Opt. 43, 1425–1434 (2004).
    [CrossRef]
  12. A. G. Marshall, F. R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry (Elsevier, 1990).
  13. S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

2004 (2)

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

J.-M. Theriault, E. Puckrin, F. Bouffard, B. Dery, “Passive remote monitoring of chemical vapors by differential Fourier-transform infrared radiometry results at a range of 1.5 km,” Appl. Opt. 43, 1425–1434 (2004).
[CrossRef]

2002 (1)

1999 (1)

1996 (1)

1992 (1)

1984 (1)

1979 (1)

1976 (2)

L. Genzel, H. R. Chandrasekhar, J. Kuhl, “Double-beam Fourier spectroscopy with two inputs and two outputs,” Opt. Commun. 18, 381–386 (1976).
[CrossRef]

G. A. Vanasse, R. E. Murphy, F. H. Cook, “Double-beaming technique in Fourier spectroscopy,” Appl. Opt. 15, 290–291 (1976).
[CrossRef] [PubMed]

Abrams, M. C.

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

Andersson-Engels, S.

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

Bak, J.

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

P. S. Jensen, J. Bak, “Measurements of urea and glucose in aqueous solutions with dual-beam near-infrared Fourier transform spectroscopy,” Appl. Spectrosc. 56, 1593–1599 (2002).
[CrossRef]

Bauer, G.

Bouffard, F.

Brault, J. W.

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

Chandrasekhar, H. R.

L. Genzel, H. R. Chandrasekhar, J. Kuhl, “Double-beam Fourier spectroscopy with two inputs and two outputs,” Opt. Commun. 18, 381–386 (1976).
[CrossRef]

Clausen, S.

Cook, F. H.

Davis, S. P.

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

Dery, B.

Friis-Hansen, L.

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

Genzel, L.

L. Genzel, H. R. Chandrasekhar, J. Kuhl, “Double-beam Fourier spectroscopy with two inputs and two outputs,” Opt. Commun. 18, 381–386 (1976).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

Hair, M. L.

Jensen, P. S.

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

P. S. Jensen, J. Bak, “Measurements of urea and glucose in aqueous solutions with dual-beam near-infrared Fourier transform spectroscopy,” Appl. Spectrosc. 56, 1593–1599 (2002).
[CrossRef]

Krenn, H.

Kuhl, J.

L. Genzel, H. R. Chandrasekhar, J. Kuhl, “Double-beam Fourier spectroscopy with two inputs and two outputs,” Opt. Commun. 18, 381–386 (1976).
[CrossRef]

Ladefoged, S.

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

Marshall, A. G.

A. G. Marshall, F. R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry (Elsevier, 1990).

Murphy, R. E.

Puckrin, E.

Rappaport, S.

Reidy, W. P.

Roshger, I.

Shepherd, O.

Sørensen, L. H.

Theriault, J.-M.

Tripp, C. P.

Vanasse, G.

Vanasse, G. A.

Verdun, F. R.

A. G. Marshall, F. R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry (Elsevier, 1990).

Zehnphennig, T. F.

Appl. Opt. (5)

Appl. Spectrosc. (3)

J. Biomed. Opt. (1)

P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, L. Friis-Hansen, “On-line monitoring of urea concentration in dialysate with dual-beam Fourier transform near-infrared spectroscopy,” J. Biomed. Opt. 9, 553–557 (2004).
[CrossRef]

Opt. Commun. (1)

L. Genzel, H. R. Chandrasekhar, J. Kuhl, “Double-beam Fourier spectroscopy with two inputs and two outputs,” Opt. Commun. 18, 381–386 (1976).
[CrossRef]

Other (3)

A. G. Marshall, F. R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry (Elsevier, 1990).

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dual-beam experimental setup: R1 and R2, retroreflectors; BS, beam splitter; M1–M6, mirrors; S, NIR halogen source; D1 and D2, diffusers.

Fig. 2
Fig. 2

Detector and digitization noise spikes (in millivolts) are observed with the naked eye in the measured single-beam difference interferograms. The measurements shown have been carried out at gain setting 1. The limited resolution of the ADC can be seen in the plot.

Fig. 3
Fig. 3

rms values (single and dual beam) calculated at each separate retardation point in the interferogram on the basis of short-term measurements of 50 interferograms during 19 s. No optical filter was used in these measurements.

Fig. 4
Fig. 4

(a) rms values in arbitrary intensity units at each separate wave number. A single-beam (SB) spectrum is plotted and compared with the single-beam rms values. (b) Integrated values (between 3000 and 6000 cm−1) of the optical (dual-beam) and mathematical (single-beam) subtraction spectra as a function of time. This plot displays the variation in percent of the spectral residual during the 19 s time of measurements.

Fig. 5
Fig. 5

rms values calculated at each separate retardation point in the interferogram on the basis of a long-term stability test. Thirty-five average interferograms (100 scans each) were measured during an 18 h time period. Spectral resolution was set at 32 cm−1. No optical filter was used in these measurements.

Fig. 6
Fig. 6

(a) rms values in the spectral domain with a single-beam (SB) spectrum for comparison. (b) Integrated intensity values calculated on the basis of full-width interferograms.

Fig. 7
Fig. 7

One-hour stability test. Sample cells were filled with water. The cells were kept at 37 °C. The single-scan rms values at the centerburst position can be found by reading the values from the figure and multiplying these by 50.

Tables (3)

Tables Icon

Table 1 Comparison of Noise Sourcesa

Tables Icon

Table 2 Influence of Source Intensitya

Tables Icon

Table 3 Water Cell Measurementsa

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

σ noise 2 = σ in 2 + σ ex 2 .
σ in 2 = σ det 2 + σ ADC 2 + σ instrument 2 .
σ ex 2 = σ sample 2 + σ source 2 + σ ambient 2 + σ jitter 2 + σ shotnoise 2 .
σ ADC = σ noise 2 - σ det 2 .
I SB = I A - I A , ref .
σ SB 2 = σ A 2 + σ A , ref 2 2 σ A 2 .
σ A 2 = σ A , in 2 + σ A . ex 2 .
σ SB = 2 σ A , in 2 + σ A , ex 2 .
σ DB = σ DB , in 2 + σ DB , ex 2 .
σ A , in 2 = σ DB , in 2 + σ ADC 2 .
σ SB = 2 σ DB , in 2 + σ ADC 2 + σ A , ex 2 .
σ DB , in 2 = 0.0289 , σ ADC 2 = 0.0112.
σ A 2 ( 19.4 ) 2 = 376.4 , σ DB 2 ( 4.6 ) 2 = 21.2.
σ SB σ DB = 2 σ DB , in 2 + σ ABC 2 + σ A , ex 2 σ DB , in 2 + σ DB , ex 2 . 2 σ A , ex σ DB , ex .
σ SB σ DB = 2 × 19.4 4.6 6.

Metrics