Abstract

We develop an angular-interrogation attenuated total reflection (ATR) metrology system for three different plasmonic sensors, namely, a conventional surface plasmon resonance (SPR) device, a coupled-waveguide SPR device, and a nanoparticle-enhanced SPR device. The proposed metrology system is capable of measuring the reflectivity spectra of the transverse magnetic mode and the transverse electric mode simultaneously. Through the optimal control of the fabrication process and use of sophisticated system instrumentation, the experimental results confirm that the developed ATR system is capable of measuring the resonant angle with an angular accuracy of 10−4 deg.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  3. J. Homola, S. S. Yee, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  4. F.-C. Chien, S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
    [CrossRef] [PubMed]
  5. E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
    [CrossRef]
  6. P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
    [CrossRef]
  7. G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
    [CrossRef]
  8. Z. Salamon, G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
  9. S.-J. Chen, F. C. Chien, G. Y. Lin, K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29, 1390–1392 (2004).
    [CrossRef] [PubMed]
  10. G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers,” Phys. Rev. B 16, 1297–1311 (1977).
    [CrossRef]
  11. T. Ung, L. M. Liz-Marzan, P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119–126 (2002).
    [CrossRef]
  12. J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
    [CrossRef]
  13. S. K. Ozdemir, G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21, 805–814 (2003).
    [CrossRef]
  14. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
    [CrossRef] [PubMed]
  15. A. G. Notcovich, V. Zhuk, S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
    [CrossRef]

2005 (1)

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

2004 (3)

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

S.-J. Chen, F. C. Chien, G. Y. Lin, K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29, 1390–1392 (2004).
[CrossRef] [PubMed]

F.-C. Chien, S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

T. Ung, L. M. Liz-Marzan, P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119–126 (2002).
[CrossRef]

2001 (2)

G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
[CrossRef]

Z. Salamon, G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).

2000 (2)

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

A. G. Notcovich, V. Zhuk, S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1991 (1)

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1977 (1)

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Beloglazov, A. A.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Chang, G. L.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Chen, S.-J.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

S.-J. Chen, F. C. Chien, G. Y. Lin, K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29, 1390–1392 (2004).
[CrossRef] [PubMed]

F.-C. Chien, S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[CrossRef] [PubMed]

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Chen, W. Y.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Chien, F. C.

Chien, F.-C.

F.-C. Chien, S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[CrossRef] [PubMed]

Chu, C.-S.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

Chyou, J.-J.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

Grigorenko, A. N.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Homola, J.

G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hsu, J. H.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Hu, W. P.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Huang, K.-T.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Hucbner, A.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Kuhne, C.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Lai, K.-A.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Lee, K. C.

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lin, C.-Y.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

Lin, G. Y.

Lipson, S. G.

A. G. Notcovich, V. Zhuk, S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Liz-Marzan, L. M.

T. Ung, L. M. Liz-Marzan, P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119–126 (2002).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Mulvaney, P.

T. Ung, L. M. Liz-Marzan, P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119–126 (2002).
[CrossRef]

Nenninger, G. G.

G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
[CrossRef]

Nikitin, P. I.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Notcovich, A. G.

A. G. Notcovich, V. Zhuk, S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Ozdemir, S. K.

Persson, B.

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Roos, H.

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
[CrossRef]

Salamon, Z.

Z. Salamon, G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).

Salzer, R.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Savchuk, A. I.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Savchuk, O. A.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Scott, G. D.

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Shih, Z.-H.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

Shu, C.-F.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

Steiner, G.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Stenberg, E.

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
[CrossRef]

Tobiska, P.

G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
[CrossRef]

Tollin, G.

Z. Salamon, G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).

Turhan-Sayan, G.

Ung, T.

T. Ung, L. M. Liz-Marzan, P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119–126 (2002).
[CrossRef]

Urbaniczky, C.

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
[CrossRef]

Valeiko, M. V.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Yee, S. S.

G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Zhuk, V.

A. G. Notcovich, V. Zhuk, S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

A. G. Notcovich, V. Zhuk, S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Biophys. J. (1)

Z. Salamon, G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).

Biosens. Bioelectron. (2)

F.-C. Chien, S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[CrossRef] [PubMed]

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Colloids Surf. A (1)

T. Ung, L. M. Liz-Marzan, P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119–126 (2002).
[CrossRef]

J. Colloid. Interface Sci. (1)

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interface Sci. 143, 513–526 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, C.-F. Shu, “Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 119–126 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators A (1)

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Hucbner, R. Salzer, “Surface plasmon resonance interferometry for microarray biosensing,” Sens. Actuators A 85, 189–193 (2000).
[CrossRef]

Sens. Actuators B (2)

G. G. Nenninger, J. Homola, S. S. Yee, P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configurations of three multilayer ATR plasmonic biosensors: (a) conventional SPR, (b) nanoparticle-enhanced SPR biosensor, and (c) CWSPR biosensor.

Fig. 2
Fig. 2

Reflectivity spectra as a function of incident angle calculated for multilayer ATR plasmonic sensors with some of the same parameters of the prism (n0 = 1.799), the biomolecular layer (n2 = 1.45, d2 = 2.0 nm), and the buffer (n3 = 1.334). Dashed curve, conventional SPR with the metal layer (ɛ1 = −10.8 + j1.47, d1 = 47.5 nm); solid curve, nanoparticle-enhanced SPR with the metal layer (ɛ1 = −10.8 + j1.47, d1 = 35 nm) and the composite layer (ɛc = 2.160 + j0.277, dc = 30 nm); dashed–dotted curve, TM-mode CWSPR with the upper metal layer (ɛ1 = −10.8 + j1.47, d1 = 30 nm), the waveguide layer (ɛw = 1.457, dw = 1000 nm), and the lower metal layer (ɛ1′ = −10.8 + j1.47, d1′ = 20 nm); dotted curve, TE-mode CWSPR with the same parameters as the TM-mode CWSPR.

Fig. 3
Fig. 3

Schematic illustration of the metrology system for multilayer ATR plasmonic biosensors. GPIB, general-purpose interface bus; ADC, analog-to-digital converter; PID, proportional–integral–derivative.

Fig. 4
Fig. 4

Comparison of the performance of conventional Au thin film and nanocluster-enhanced SPR sensors to detect two different gases. Solid curve, Au nanocluster-enhanced SPR biosensor, dashed curve, conventional SPR biosensor.

Fig. 5
Fig. 5

Various TM- and TE-mode dips for CWSPR measured simultaneously using an SF-11 prism (n0 = 1.779), upper Au film (ɛ1 = −10.8 + j1.47, d1 = 20 nm), SiO2 (nw = 1.457, dw = 1045 nm), lower Au layer (ɛ1′ = −10.8 + j1.47, d1′ = 30 nm), and N2 (ɛ3 = 1.0003). Bold solid curve, measured TM mode; light solid curve, calculated TM mode; bold dashed curve, measured TE mode; light dashed curve, calculated TE mode.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k SP k SP 0 + Δ k SP , 1 + Δ k SP , 2 ,
k x l = 2 π λ ɛ 0 sin θ ,
Re ( k SP 0 ) 2 π λ ɛ r 1 ɛ 3 ɛ r 1 + ɛ 3 ,
Δ k SP , 1 4 π λ ( ɛ 1 ɛ 3 ɛ 1 + ɛ 3 ) 3 / 2 1 ɛ 3 - ɛ 1 × [ - ɛ r 1 ( ɛ 0 - 1 ) - ɛ 0 ] - j ɛ 0 2 [ - ɛ r 1 ( ɛ 0 - 1 ) - ɛ 0 ] + j ɛ 0 2 × exp ( 2 j k z 1 d 1 ) ,
Δ k SP , 2 d 2 ( 2 π λ ) 2 ( - ɛ r 1 ɛ 3 ) 3 / 2 ( ɛ r 1 - ɛ 2 ) ( ɛ 2 - ɛ 3 ) ɛ 2 ( ɛ r 1 2 - ɛ 3 2 ) ( ɛ r 1 + ɛ 3 ) .
r 0123 p = r 01 p + r 123 p exp ( 2 j k z 1 d 1 ) 1 + r 01 p r 123 p exp ( 2 j k z 1 d 1 ) ,
k z i = k i 2 - k x l 2 = 2 π λ ɛ i - ɛ 0 sin 2 θ
r 123 p = r 12 p + r 23 p exp ( 2 j k z 2 d 2 ) 1 + r 12 p r 23 p exp ( 2 j k z 2 d 2 ) ,
r i , i + 1 p = ɛ i + 1 k z i - ɛ i k z i + 1 ɛ i + 1 k z i + ɛ i k z i + 1 .
ɛ c = ɛ d ɛ m ( 1 + 2 ϕ ) + 2 ɛ d ( 1 - ϕ ) ɛ m ( 1 - ϕ ) + ɛ d ( 2 + ϕ ) ,

Metrics