Abstract

A resonant-cavity-enhanced photodiode with broad filter transmittance and high quantum efficiency was numerically designed and analyzed, fabricated, and validated experimentally. We show theoretically that the quantum-efficiency spectrum broadens because of anomalous dispersion of the reflection phase of a mirror in the device and describe conditions that allow maximal flatness of the transmitted spectrum to be achieved. To demonstrate the concepts we design, fabricate, and characterize a backilluminated In0.47Ga0.53As-based p-i-n photodiode upon a InP substrate. Experimental measurements of the fabricated devices demonstrate a peak quantum efficiency of 0.80 at 1550 nm and a FWHM of transmittance of 35.96 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
    [CrossRef]
  2. M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
    [CrossRef]
  3. M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–39 (1995).
    [CrossRef]
  4. K. Liu, Y. Huang, X. Ren, “Theory and experiments of a three-cavity wavelength-selective photodetector,” Appl. Opt. 39, 4263–4269 (2000).
    [CrossRef]
  5. H.-H. Tung, C.-P. Lee, “Design of a resonant-cavity-enhanced photodetector for high-speed applications,” IEEE J. Quantum Electron. 33, 753–60 (1997).
    [CrossRef]
  6. M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.
  7. S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997).
    [CrossRef]
  8. Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
    [CrossRef]
  9. F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
    [CrossRef]
  10. A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
    [CrossRef]
  11. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
    [CrossRef]
  12. Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
    [CrossRef]
  13. C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
    [CrossRef]
  14. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989), p. 20.
  15. Y. V. Troitski, “Dispersion-free, multiple-beam interferometer,” Appl. Opt. 34, 4717–4722 (1995).
    [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vols. I and III.
  17. W. Kowalsky, J. Mahnss, “Monolithically integrated InGaAlAs dielectric reflectors for vertical cavity optoelectronic devices,” Appl. Phys. Lett. 59, 1011–1012 (1991).
    [CrossRef]
  18. Y. Y. Troitski, “Dielectric mirrors with the anomalous dispersion of the reflection phase,” Opt. Spectros. 77, 503–506 (1994).
  19. H. A. Macleod, Thin-Film Optical Filters,3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  20. M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
    [CrossRef]

2002 (1)

Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

2000 (2)

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

K. Liu, Y. Huang, X. Ren, “Theory and experiments of a three-cavity wavelength-selective photodetector,” Appl. Opt. 39, 4263–4269 (2000).
[CrossRef]

1998 (1)

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

1997 (2)

H.-H. Tung, C.-P. Lee, “Design of a resonant-cavity-enhanced photodetector for high-speed applications,” IEEE J. Quantum Electron. 33, 753–60 (1997).
[CrossRef]

S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997).
[CrossRef]

1995 (3)

A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–39 (1995).
[CrossRef]

Y. V. Troitski, “Dispersion-free, multiple-beam interferometer,” Appl. Opt. 34, 4717–4722 (1995).
[CrossRef] [PubMed]

1994 (1)

Y. Y. Troitski, “Dielectric mirrors with the anomalous dispersion of the reflection phase,” Opt. Spectros. 77, 503–506 (1994).

1993 (1)

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

1992 (2)

M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
[CrossRef]

M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

1991 (2)

W. Kowalsky, J. Mahnss, “Monolithically integrated InGaAlAs dielectric reflectors for vertical cavity optoelectronic devices,” Appl. Phys. Lett. 59, 1011–1012 (1991).
[CrossRef]

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Arsenault, L.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Babic, D. I.

M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
[CrossRef]

Bowers, J. E.

M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
[CrossRef]

Campbell, J. C.

A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Chyi, J.-I.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Coldren, L. A.

S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997).
[CrossRef]

M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
[CrossRef]

Dosunmu, O.

M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.

Gokkavas, M.

M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.

Gui, X.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Hegblom, E. R.

S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997).
[CrossRef]

Ho, K. M.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Hu, S. Y.

S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997).
[CrossRef]

Huang, F. Y.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Huang, H.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Huang, Y.

K. Liu, Y. Huang, X. Ren, “Theory and experiments of a three-cavity wavelength-selective photodetector,” Appl. Opt. 39, 4263–4269 (2000).
[CrossRef]

Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
[CrossRef]

Kavanaugh, J. P.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Kishino, K.

M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Kowalsky, W.

W. Kowalsky, J. Mahnss, “Monolithically integrated InGaAlAs dielectric reflectors for vertical cavity optoelectronic devices,” Appl. Phys. Lett. 59, 1011–1012 (1991).
[CrossRef]

Lee, C.-P.

H.-H. Tung, C.-P. Lee, “Design of a resonant-cavity-enhanced photodetector for high-speed applications,” IEEE J. Quantum Electron. 33, 753–60 (1997).
[CrossRef]

Li, C.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Li, L.

Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
[CrossRef]

Li, Y.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Liaw, H. J.

M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

Liu, K.

Luo, H. T.

Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters,3rd ed. (Institute of Physics, 2001).
[CrossRef]

Mahnss, J.

W. Kowalsky, J. Mahnss, “Monolithically integrated InGaAlAs dielectric reflectors for vertical cavity optoelectronic devices,” Appl. Phys. Lett. 59, 1011–1012 (1991).
[CrossRef]

Mirin, R. P.

M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.

Mondry, M. J.

M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
[CrossRef]

Morkoc, H.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Murtaza, S.

A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Ozbay, E.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vols. I and III.

Pan, Z.

Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
[CrossRef]

Reed, J.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Ren, X.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

K. Liu, Y. Huang, X. Ren, “Theory and experiments of a three-cavity wavelength-selective photodetector,” Appl. Opt. 39, 4263–4269 (2000).
[CrossRef]

Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
[CrossRef]

Salvador, A.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Shen, W. Z.

Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Srinivasan, A.

A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Streetman, B. G.

A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Strite, S.

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–39 (1995).
[CrossRef]

Temelkuran, B.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Teraguchi, N.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989), p. 20.

Troitski, Y. V.

Troitski, Y. Y.

Y. Y. Troitski, “Dielectric mirrors with the anomalous dispersion of the reflection phase,” Opt. Spectros. 77, 503–506 (1994).

Tung, H.-H.

H.-H. Tung, C.-P. Lee, “Design of a resonant-cavity-enhanced photodetector for high-speed applications,” IEEE J. Quantum Electron. 33, 753–60 (1997).
[CrossRef]

Tuttle, G.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Ulu, G.

M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.

Unlu, M. S.

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–39 (1995).
[CrossRef]

M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.

Wang, H.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Wang, Q.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Yang, Q.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Yu, J.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Zhang, Y. H.

Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Zhong, Y.

Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
[CrossRef]

Zhou, J.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

S. Y. Hu, E. R. Hegblom, L. A. Coldren, “Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71, 178–180 (1997).
[CrossRef]

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

A. Srinivasan, S. Murtaza, J. C. Campbell, B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

W. Kowalsky, J. Mahnss, “Monolithically integrated InGaAlAs dielectric reflectors for vertical cavity optoelectronic devices,” Appl. Phys. Lett. 59, 1011–1012 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

H.-H. Tung, C.-P. Lee, “Design of a resonant-cavity-enhanced photodetector for high-speed applications,” IEEE J. Quantum Electron. 33, 753–60 (1997).
[CrossRef]

IEEE Photon. Technol. J. (1)

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. J. 12, 1373–1375 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren, “Refractive-indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett. 4, 627–630 (1992).
[CrossRef]

J. Appl. Phys. (3)

M. S. Unlu, K. Kishino, H. J. Liaw, H. Morkoc, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4058 (1992).
[CrossRef]

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–39 (1995).
[CrossRef]

Y. H. Zhang, H. T. Luo, W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Opt. Spectros. (1)

Y. Y. Troitski, “Dielectric mirrors with the anomalous dispersion of the reflection phase,” Opt. Spectros. 77, 503–506 (1994).

Other (5)

H. A. Macleod, Thin-Film Optical Filters,3rd ed. (Institute of Physics, 2001).
[CrossRef]

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989), p. 20.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vols. I and III.

M. Gokkavas, G. Ulu, O. Dosunmu, R. P. Mirin, M. S. Unlu, “Resonant cavity enhanced photodiodes with a broadened spectral peak,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 2001), Vol. 2, pp. 768–769.

Y. Zhong, Z. Pan, L. Li, Y. Huang, X. Ren, “Proposition of a nearly rectangular response resonant cavity enhanced (RCE) photodetector,” in Semiconductor Optoelectronic Device Manufacturing and Applications, D. Chen, ed., Proc. SPIE4602, 74–78 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the structure of a generalized RCE photoreceiver.

Fig. 2
Fig. 2

Results of simulation with three designs of RCE PDs with structure H2L(HL)qH1(LH)pLS2CS1M1, where p = 13, q = 7, H1 = 249 nm, H2 = 69.7 nm, and S2 = 355.8 nm (solid curves); p = 7, q = 14, H1 = 468.64 nm, H2 = 69 nm, and S2 = 220 nm (dashed curves); and p + q = 6, H1 = 139.4 nm, H2 = 61.5 nm, and S2 = 358.3 nm (dotted curves). Here L and H are 91.3 and 139.4 nm, respectively. (a) Amplitude of the reflection coefficients of the entrance mirror with structure S2L(HL)pH1(LH)qLH2; the dashed–dotted curve is the curve of r2 exp(−αd). (b) Reflection phase of entrance mirror ϕ1. (c) Total phase shift Φ of RCE PDs. (d) Quantum efficiency of RCE PDs.

Fig. 3
Fig. 3

Performance and the properties of the RCE PDs with structure H2L(HL)qH1(LH)pLS2CS1M1, where p = 13, q = 7, H1 = 249.0 nm, and H2 = 69.7 nm (solid curves); p = 12, q = 6, H1 = 694.2 nm, and H2 = 69.5 nm (dashed curve); and p = 11, q = 5, H1 = 1362.3 nm, and H2 = 69.5 nm (dotted curves). The thickness of active layer C is 467.6 nm, and S2 = 355.8 nm. (a) Corresponding amplitudes of the reflection coefficients of entrance mirrors S2L(HL)pH1(LH)qLH2. The dashed–dotted curve is the curve of r2 exp(−αd). (b) Total phase shift Φ of these three designs. (c) Corresponding quantum efficiency.

Fig. 4
Fig. 4

Maximum quantum efficiency and bandwidth of the RCE PD with structure H2L(HL)qH1(LH)pLS2CS1M1 with variations of the active layer’s thickness.

Fig. 5
Fig. 5

Quantum efficiency with three orders of cavity thickness H1 and the spacer S2. (a) Quantum efficiency of PDs with H1 = 249.0 nm (solid curve), H1 = 1137.9 nm (dashed curve), and H1 = 2026.8 nm (dotted curve). S2 = 355.8 nm. (b) Quantum efficiency with S2 = 355.8 nm (solid curve), S2 = 1340.0 nm (dashed curve), and S2 = 2324.2 nm (dotted curve). H1 = 249 nm. (c) Quantum efficiency with H1 = 249.0 nm and S2 = 355.8 nm (solid curve), H1 = 1137.9 nm and S2 = 1340.0 nm (dashed curve), and H1 = 2026.8 nm and S2 = 2324.2 nm (dotted curve).

Fig. 6
Fig. 6

Quantum efficiency versus absorption coefficient: α = 1.2 × 104 cm−1 (dashed curve), 1 × 104 cm−1 (solid curve), and 0.8 × 104 cm−1 (dotted curve).

Fig. 7
Fig. 7

Effect of variations in the refractive indices of InGaAlAs and InAlAs materials. (a) Amplitude of reflection coefficients r1 with variations of nInGaAlAs and nInAlAs. (b) Quantum efficiency with corresponding values of nInGaAlAs and nInAlAs.

Fig. 8
Fig. 8

Effect of variations in layer thickness of DBM M2. Quantum efficiency with several thicknesses of InAlAs and InGaAlAs layers: 97% variation of the InAlAs layer and 100% of the InGaAlAs layer (dashed curve), 100% variation of the InAlAs layer and 100% of the InGaAlAs layer (solid curve), 103% variation of the InAlAs layer and 100% of the InGaAlAs layer (dotted curve), 100% variation of the InAlAs layer and 97% of the InGaAlAs layer (dashed–dotted curve), and 100% variation of the InAlAs layer and 103% of the InGaAlAs layer (circles).

Fig. 9
Fig. 9

(a) Schematic diagram of the layers of the fabricated device. (b) Normalized reflectance spectra of the design results, measured data, and optimization results of a fitted reflectance spectrum from 1500 to 1600 nm are shown; S.I., semi-insulating. We made the measurement and calculations by looking from the epitaxial side to the substrate without evaporation. The substrate side is unpolished.

Fig. 10
Fig. 10

(a) Relation of conditions (ii) (see text). The fitted curves were calculated by the optimized parameters obtained by fitting of the reflectance spectrum in Fig. 9(b). (b) Total phase Φ of the design and that calculated by the optimized parameters are shown. (c) Quantum efficiency of the design, measured and fitted by the optimized parameters.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E i R E i L ] = [ 1 / t 11 - r 12 / t 12 r 11 / t 11 1 / t 12 ] [ E a R E a L ] , [ E a R E a L ] = [ 1 / t 21 - r 22 / t 22 r 21 / t 21 1 / t 22 ] [ E o R E o L ] , [ E a R E a L ] = [ exp [ ( α / 2 + j β ) d ] 0 0 exp [ - ( α / 2 + j β ) d ] ] × [ E a R E a L ] ,
P absorb = n a 2 η o ( E b R 2 + E b L 2 ) [ 1 - exp ( - α d ) ] ,
η = P absorb P in = n a n i t 11 2 [ 1 + r 21 2 exp ( - α d ) ] [ 1 - exp ( - α d ) ] 1 - r 12 r 21 ( t 11 / t 12 ) exp ( - α d - 2 j β d ) 2 .
η ( λ ) = [ 1 - r 1 ( λ ) 2 ] [ 1 + r 2 ( λ ) 2 exp ( - α d ) ] [ 1 - exp ( - α d ) ] { 1 + r 1 ( λ ) 2 r 2 ( λ ) 2 exp ( - 2 α d ) - 2 r 1 ( λ ) r 2 ( λ ) exp ( - α d ) cos [ 2 β d - ϕ 1 ( λ ) - ϕ 2 ( λ ) ] } ,
r r 1 ( λ ) - r r 2 ( λ ) exp [ - j ϕ 11 ( λ ) ] 1 - r r 1 ( λ ) r r 2 ( λ ) exp [ - j ϕ 11 ( λ ) ] ,
r 1 ( λ o ) = | r r 1 ( λ o ) - r r 2 ( λ o ) 1 - r r 1 ( λ o ) r r 2 ( λ o ) | .
d ϕ 1 d λ = ( d ϕ A ( λ o ) d k o + r r 2 ( λ o ) [ 1 - r r 1 ( λ o ) 2 ] [ r r 1 ( λ o ) - r r 2 ( λ o ) ] [ 1 - r r 1 ( λ o ) r r 2 ( λ o ) ] × d Φ A d k o ) d k o d λ ,
d Φ 1 d λ = ( 2 n a d - d ϕ 2 d k o ) d k o d λ .

Metrics