Abstract

An optical device that converts unpolarized light into a single polarization state is described. The device is based on a polarizing beam splitter that separates the two polarization directions. The beam splitter is combined with two pairs of equilateral prisms that are used to collimate the two beams in terms of both propagation and polarization directions. When it is used in combination with a blazed diffraction grating, this device is shown to effectively remove the polarization dependence of the first-order diffracted power. The device has an insertion loss of approximately 14% for purely s-polarized light. However, for unpolarized light incident upon the two gratings studied here, the increased throughput of the p-polarized component leads to an average relative gain in overall efficiency of 13%–19%, depending on the grating. In collimating the two polarization directions, the device may cause a reduction in spectral resolution for a rectangular entrance slit. As a result, the device is more likely to find use in spectrometers that have a circular aperture, such as that provided by an optical fiber.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization-insensitive high-dispersion total internal reflection diffraction gratings

John R. Marciante, Jeffrey I. Hirsh, Daniel H. Raguin, and Eric T. Prince
J. Opt. Soc. Am. A 22(2) 299-305 (2005)

Absolute S- and P-plane polarization efficiencies for high frequency holographic gratings in the VUV

Anthony J. Caruso, George H. Mount, and Bruce E. Woodgate
Appl. Opt. 20(10) 1764-1776 (1981)

Measured performance of shadow-cast coated gratings for spectro-polarimetric applications

Roberto Casini, Dennis Gallagher, Anthony Cordova, and Matthew Morgan
Appl. Opt. 57(25) 7276-7280 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription