Abstract

An optical device that converts unpolarized light into a single polarization state is described. The device is based on a polarizing beam splitter that separates the two polarization directions. The beam splitter is combined with two pairs of equilateral prisms that are used to collimate the two beams in terms of both propagation and polarization directions. When it is used in combination with a blazed diffraction grating, this device is shown to effectively remove the polarization dependence of the first-order diffracted power. The device has an insertion loss of approximately 14% for purely s-polarized light. However, for unpolarized light incident upon the two gratings studied here, the increased throughput of the p-polarized component leads to an average relative gain in overall efficiency of 13%–19%, depending on the grating. In collimating the two polarization directions, the device may cause a reduction in spectral resolution for a rectangular entrance slit. As a result, the device is more likely to find use in spectrometers that have a circular aperture, such as that provided by an optical fiber.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  2. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, 1980).
    [CrossRef]
  3. E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
    [CrossRef] [PubMed]
  4. G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39, 1645–1652 (2003).
    [CrossRef]
  5. A. J. A. Nicia, T. L. Van Rooy, J. Haisma, “Optical multiplexer and demultiplexer,” U.S. patent4,741,588 (3May1988).
  6. M. Iida, K. Hagiwara, H. Asakura, “Holographic Fourier diffraction gratings with a high diffraction efficiency optimized for optical communications systems,” Appl. Opt. 31, 3015–3019 (1992).
    [CrossRef]
  7. S. Michielsen, “Application of Raman spectroscopy to organic fibers and films,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 749–798.
  8. D. Milner, K. Didona, D. Bannon, “High efficiency diffraction grating technologies: LPDL 900 and LPDL 1100 in telecommunications applications,” in Optical Components and Materials II, S. Jiang, M. J. F. Digonnet, eds., Proc. SPIE5723, 34–42 (2005).
    [CrossRef]
  9. A. B. Shafer, L. R. Megill, L. Droppleman, “Optimization of the Czerny–Turner Spectrometer,” J. Opt. Soc. Am. 54, 879–887 (1964).
    [CrossRef]
  10. D. E. Battey, J. B. Slater, R. Wludyka, H. Owen, D. M. Pallister, M. D. Morris, “Axial transmissive f/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating,” Appl. Spectrosc. 47, 1913–1919 (1993).
    [CrossRef]
  11. J. B. Slater, J. M. Tedesco, R. C. Fairchild, I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 41–144.
  12. J. L. Olson, “Sources of error in monochromator-mode efficiency measurements of plane diffraction gratings,” in Diffraction Gratings Handbook,5th ed., C. Palmer, ed. (Thermo RGL, 2002), pp. 170–186.

2003 (1)

G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39, 1645–1652 (2003).
[CrossRef]

1993 (1)

1992 (1)

1977 (1)

1964 (1)

Asakura, H.

Bannon, D.

D. Milner, K. Didona, D. Bannon, “High efficiency diffraction grating technologies: LPDL 900 and LPDL 1100 in telecommunications applications,” in Optical Components and Materials II, S. Jiang, M. J. F. Digonnet, eds., Proc. SPIE5723, 34–42 (2005).
[CrossRef]

Battey, D. E.

Cincotti, G.

G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39, 1645–1652 (2003).
[CrossRef]

Didona, K.

D. Milner, K. Didona, D. Bannon, “High efficiency diffraction grating technologies: LPDL 900 and LPDL 1100 in telecommunications applications,” in Optical Components and Materials II, S. Jiang, M. J. F. Digonnet, eds., Proc. SPIE5723, 34–42 (2005).
[CrossRef]

Droppleman, L.

Fairchild, R. C.

J. B. Slater, J. M. Tedesco, R. C. Fairchild, I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 41–144.

Hagiwara, K.

Haisma, J.

A. J. A. Nicia, T. L. Van Rooy, J. Haisma, “Optical multiplexer and demultiplexer,” U.S. patent4,741,588 (3May1988).

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, 1982).

Iida, M.

Lewis, I. R.

J. B. Slater, J. M. Tedesco, R. C. Fairchild, I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 41–144.

Loewen, E. G.

Maystre, D.

Megill, L. R.

Michielsen, S.

S. Michielsen, “Application of Raman spectroscopy to organic fibers and films,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 749–798.

Milner, D.

D. Milner, K. Didona, D. Bannon, “High efficiency diffraction grating technologies: LPDL 900 and LPDL 1100 in telecommunications applications,” in Optical Components and Materials II, S. Jiang, M. J. F. Digonnet, eds., Proc. SPIE5723, 34–42 (2005).
[CrossRef]

Morris, M. D.

Nevière, M.

Nicia, A. J. A.

A. J. A. Nicia, T. L. Van Rooy, J. Haisma, “Optical multiplexer and demultiplexer,” U.S. patent4,741,588 (3May1988).

Olson, J. L.

J. L. Olson, “Sources of error in monochromator-mode efficiency measurements of plane diffraction gratings,” in Diffraction Gratings Handbook,5th ed., C. Palmer, ed. (Thermo RGL, 2002), pp. 170–186.

Owen, H.

Pallister, D. M.

Shafer, A. B.

Slater, J. B.

D. E. Battey, J. B. Slater, R. Wludyka, H. Owen, D. M. Pallister, M. D. Morris, “Axial transmissive f/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating,” Appl. Spectrosc. 47, 1913–1919 (1993).
[CrossRef]

J. B. Slater, J. M. Tedesco, R. C. Fairchild, I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 41–144.

Tedesco, J. M.

J. B. Slater, J. M. Tedesco, R. C. Fairchild, I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 41–144.

Van Rooy, T. L.

A. J. A. Nicia, T. L. Van Rooy, J. Haisma, “Optical multiplexer and demultiplexer,” U.S. patent4,741,588 (3May1988).

Wludyka, R.

Appl. Opt. (2)

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39, 1645–1652 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (7)

A. J. A. Nicia, T. L. Van Rooy, J. Haisma, “Optical multiplexer and demultiplexer,” U.S. patent4,741,588 (3May1988).

M. C. Hutley, Diffraction Gratings (Academic, 1982).

R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, 1980).
[CrossRef]

J. B. Slater, J. M. Tedesco, R. C. Fairchild, I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 41–144.

J. L. Olson, “Sources of error in monochromator-mode efficiency measurements of plane diffraction gratings,” in Diffraction Gratings Handbook,5th ed., C. Palmer, ed. (Thermo RGL, 2002), pp. 170–186.

S. Michielsen, “Application of Raman spectroscopy to organic fibers and films,” in Handbook of Raman Spectroscopy, I. R. Lewis, H. G. M. Edwards, eds. (Marcel Dekker, 2001), pp. 749–798.

D. Milner, K. Didona, D. Bannon, “High efficiency diffraction grating technologies: LPDL 900 and LPDL 1100 in telecommunications applications,” in Optical Components and Materials II, S. Jiang, M. J. F. Digonnet, eds., Proc. SPIE5723, 34–42 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the PCB module. (b) Exploded diagram of the PCB: I, unpolarized incident beam; UP, untwisted periscope; TP, twisted periscope; PBC, polarizing beam-splitter cube.

Fig. 2
Fig. 2

Simple spectrometer based on the PCB: EP, entrance pinhole; DG, diffraction grating; other abbreviations defined in text.

Fig. 3
Fig. 3

Experimental setup for efficiency measurements: FC, fiber coupler; BB, beam block; FW, filter wheel; P, polarizer; PD, photodiode; OPM, optical powermeter; other abbreviations defined in text. The beam intensity is measured at points Y, Y′, and Z. (a) Spectrometer with the PCB at position K in beam path L. Mirror M2 (position H) is not in the beam path. (b) For the spectrometer without the PCB, mirror M2 (position H′) forms a periscope with mirror M1 to give beam path L′. The PCB is now in position K′.

Fig. 4
Fig. 4

Efficiency curves for the 500 nm blazed grating in (a) the conventional spectrometer arrangement and (b) the PCB-based spectrometer. The unpolarized curve in (b) shows the average of the s- and p-polarized curves for the conventional spectrometer and is included here for comparison.

Fig. 5
Fig. 5

Polarized efficiency curves for the 400 nm blazed grating in (a) the conventional spectrometer and (b) the PCB-based spectrometer. The unpolarized curve in (b) shows the average of the sand p-polarized curves for the conventional spectrometer and is included here for comparison.

Fig. 6
Fig. 6

(a) Shaped entrance aperture used for imaging studies. (b) Aperture image observed for p polarization (i.e., aperture image formed by beam I p s *). (c) Aperture image observed for s polarization (i.e., aperture image formed by beam I p s *). (d) Experimental image obtained under random polarization. The direction of the spectral dispersion is indicated by the double-headed arrow in (a).

Metrics