Abstract

An innovative manufacturing process utilizing high-temperature compression molding to fabricate aspherical microlenses by using optical glasses, such as BK7, K-PG325, and soda-lime glass, is investigated. In a departure from conventional approaches, a unique hollow contactless mold design is adopted. Polished glass substrates and the mold assembly are heated above the glass transition temperature first, followed by initial forming, then annealing. The forming rate is controlled in real time to ensure mold position accuracy. Mold materials used include tungsten carbides, 316 stainless steel, 715 copper nickel, and aluminum alloys. The geometric control of the microlenses or microlens arrays can be precisely controlled by the forming temperature, forming speed, mold design, and annealing time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of referactive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
    [CrossRef] [PubMed]
  2. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon,” Appl. Opt. 32, 6211–6218 (1993).
    [CrossRef] [PubMed]
  3. M. Fritze, M. B. Stern, P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998).
    [CrossRef]
  4. M. R. Wang, H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt. 37, 7568–7576 (1998).
    [CrossRef]
  5. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  6. W. X. Yu, X. -C. Yuan, “Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography,” Opt. Express 11, 899–903 (2003).
    [CrossRef] [PubMed]
  7. A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
    [CrossRef]
  8. F. Q. Fu, B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40, 511–516 (2001).
    [CrossRef]
  9. D. M. Hartmann, O. Kibar, S. C. Esener, “Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001).
    [CrossRef]
  10. S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
    [CrossRef]
  11. H. J. Quenzer, K. Reimer, P. Merz, “Three-dimensional micro-structuring for optical applications,” in Proceedings of the DGG Symposium Processing and Applications of Optical Components, (Verlag der DGG, 2003), pp. 13–22.
  12. A. Jain, A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530–535 (2005).
    [CrossRef]
  13. R. O. Maschmeyer, C. A. Andrysick, T. W. Geyer, H. E. Meissner, C. J. Parker, L. M. Sanford, “Precision molded glass optics,” Appl. Opt. 22, 2413–2415 (1983).
    [CrossRef] [PubMed]
  14. R. O. Maschmeyer, R. M. Hujar, L. L. Carpenter, B. W. Nicholson, E. F. Vozenilek, “Optical performance of a diffraction-limited molded-glass biaspheric lens,” Appl. Opt. 22, 2413–2415 (1983).
    [CrossRef] [PubMed]
  15. G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005).
    [CrossRef]
  16. A. Y. Yi, A. Jain, “Compression molding of aspherical glass lenses—a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
    [CrossRef]
  17. A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005).
    [CrossRef]
  18. S. Calixto, “Silicone microlenses and interference gratings,” Appl. Opt. 41, 3355–3361 (2002).
    [CrossRef] [PubMed]
  19. B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
    [CrossRef] [PubMed]

2005 (4)

A. Jain, A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530–535 (2005).
[CrossRef]

G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005).
[CrossRef]

A. Y. Yi, A. Jain, “Compression molding of aspherical glass lenses—a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005).
[CrossRef]

2003 (2)

S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
[CrossRef]

W. X. Yu, X. -C. Yuan, “Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography,” Opt. Express 11, 899–903 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

D. M. Hartmann, O. Kibar, S. C. Esener, “Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001).
[CrossRef]

F. Q. Fu, B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40, 511–516 (2001).
[CrossRef]

2000 (1)

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

1998 (2)

1997 (2)

1993 (1)

1988 (1)

1983 (2)

Andrysick, C. A.

Calixto, S.

Carpenter, L. L.

Connell, G. A. N.

Corazza, D. J.

Esener, S. C.

Firestone, G. C.

G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005).
[CrossRef]

A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005).
[CrossRef]

Frese, I.

S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
[CrossRef]

Fritze, M.

Fu, F. Q.

F. Q. Fu, B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40, 511–516 (2001).
[CrossRef]

Geyer, T. W.

Hartmann, D. M.

Herzig, H. P.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Hujar, R. M.

Jain, A.

G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005).
[CrossRef]

A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005).
[CrossRef]

A. Jain, A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530–535 (2005).
[CrossRef]

A. Y. Yi, A. Jain, “Compression molding of aspherical glass lenses—a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

Kasprzak, H.

S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
[CrossRef]

Keyworth, B. P.

Kibar, O.

Kufner, S.

S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
[CrossRef]

Lazare, S.

Mabbott, L.

Maschmeyer, R. O.

McMullin, J. N.

Meissner, H. E.

Merz, P.

H. J. Quenzer, K. Reimer, P. Merz, “Three-dimensional micro-structuring for optical applications,” in Proceedings of the DGG Symposium Processing and Applications of Optical Components, (Verlag der DGG, 2003), pp. 13–22.

Merz, R.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Mihailov, S.

Ngoi, B. K. A.

F. Q. Fu, B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40, 511–516 (2001).
[CrossRef]

Nicholson, B. W.

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Parker, C. J.

Popovic, Z. D.

Quenzer, H. J.

H. J. Quenzer, K. Reimer, P. Merz, “Three-dimensional micro-structuring for optical applications,” in Proceedings of the DGG Symposium Processing and Applications of Optical Components, (Verlag der DGG, 2003), pp. 13–22.

Reimer, K.

H. J. Quenzer, K. Reimer, P. Merz, “Three-dimensional micro-structuring for optical applications,” in Proceedings of the DGG Symposium Processing and Applications of Optical Components, (Verlag der DGG, 2003), pp. 13–22.

Sanford, L. M.

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Sprague, R. A.

Stern, M. B.

Su, H.

Vozenilek, E. F.

Wang, M. R.

Wyatt, P. W.

Yi, A. Y.

G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005).
[CrossRef]

A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005).
[CrossRef]

A. Jain, A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530–535 (2005).
[CrossRef]

A. Y. Yi, A. Jain, “Compression molding of aspherical glass lenses—a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

Yu, W. X.

Yuan, X. -C.

Ziolkowski, S.

S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
[CrossRef]

Appl. Opt. (9)

B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of referactive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
[CrossRef] [PubMed]

S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon,” Appl. Opt. 32, 6211–6218 (1993).
[CrossRef] [PubMed]

M. R. Wang, H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt. 37, 7568–7576 (1998).
[CrossRef]

Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
[CrossRef] [PubMed]

D. M. Hartmann, O. Kibar, S. C. Esener, “Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001).
[CrossRef]

R. O. Maschmeyer, C. A. Andrysick, T. W. Geyer, H. E. Meissner, C. J. Parker, L. M. Sanford, “Precision molded glass optics,” Appl. Opt. 22, 2413–2415 (1983).
[CrossRef] [PubMed]

R. O. Maschmeyer, R. M. Hujar, L. L. Carpenter, B. W. Nicholson, E. F. Vozenilek, “Optical performance of a diffraction-limited molded-glass biaspheric lens,” Appl. Opt. 22, 2413–2415 (1983).
[CrossRef] [PubMed]

S. Calixto, “Silicone microlenses and interference gratings,” Appl. Opt. 41, 3355–3361 (2002).
[CrossRef] [PubMed]

B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
[CrossRef] [PubMed]

J. Am. Ceram. Soc. (3)

A. Jain, A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530–535 (2005).
[CrossRef]

A. Y. Yi, A. Jain, “Compression molding of aspherical glass lenses—a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

A. Jain, G. C. Firestone, A. Y. Yi, “Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,” J. Am. Ceram. Soc. 88, 2409–2414 (2005).
[CrossRef]

Opt. Eng. (3)

S. Ziolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contact-less embossing of microlenses—a parameter study,” Opt. Eng. 42, 1451–1455 (2003).
[CrossRef]

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

F. Q. Fu, B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40, 511–516 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

G. C. Firestone, A. Jain, A. Y. Yi, “A precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 63101–63108 (2005).
[CrossRef]

Other (1)

H. J. Quenzer, K. Reimer, P. Merz, “Three-dimensional micro-structuring for optical applications,” in Proceedings of the DGG Symposium Processing and Applications of Optical Components, (Verlag der DGG, 2003), pp. 13–22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of microlens molding process. (a) Effect of three different edge geometries. (b) Microlens forming.

Fig. 2
Fig. 2

Geometries of the tested molds. (a) Squared edge. (b) Chamfered edge.

Fig. 3
Fig. 3

The thickness trend of the molded microlenses.

Fig. 4
Fig. 4

Lens curve measured on CMM.

Fig. 5
Fig. 5

Lens repeatability.

Fig. 6
Fig. 6

SEM photo and profile of the microlens array.

Fig. 7
Fig. 7

SEM photo of low Tg lens array.

Fig. 8
Fig. 8

Image of letter μ formed by the microlens.

Fig. 9
Fig. 9

Test setup for measuring the focal length of a molded microlens array.

Metrics