Abstract

An instrumentation for total and angle-resolved scattering (ARS) at 193 and 157 nm has been developed at the Fraunhofer Institute in Jena to meet the severe requirements for scattering analysis of deep-and vacuum-ultraviolet optical components. Extremely low backscattering levels of 10−6 for the total scattering measurements and more than 9 orders of magnitude dynamic range for ARS have been accomplished. Examples of application extend from the control of at-wavelength scattering losses of superpolished substrates with rms roughness as small as 0.1 nm to the detection of volume material scattering and the study into the scattering of multilayer coatings. In addition, software programs were developed to model the roughness-induced light scattering of substrates and thin-film coatings.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lammers, “Lithography gear switches for 65 nm,” (EE Times, 12July2004), http://www.eedesign.com .
  2. A. Hand, “Tricks with water and light: 193 nm extension” (Semiconductor International, 1February2004), http://www.reed-electronics.com/semiconductor .
  3. O. Apel, K. Mann, “DUV scattering measurements as a tool for characterization of UV-optical surfaces,” Appl. Phys. A 72, 59–65 (2001).
    [CrossRef]
  4. P. Kadkhoda, A. Müller, D. Ristau, “Total scatter losses of optical components in the DUV/VUV spectral range,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3902, 118–127 (2000).
  5. M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, K. Sone, S. Niisaka, T. Saito, J. Saito, A. Tanaka, A. Matsumoto, “Development of optical coatings for 157-nm lithography. II. Reflectance, absorption, and scatter measurement,” Appl. Opt. 41, 3248–3255 (2002).
    [CrossRef] [PubMed]
  6. T. M. Bloomstein, D. E. Hardy, L. Gomez, M. Rothschild, “Angle-resolved scattering measurements of polished surfaces and optical coatings at 157 nm,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 742–752 (2003).
    [CrossRef]
  7. “Standard test method for measuring the effective surface roughness of optical components by total integrated scattering,” (American Society for Testing and Materials, 1987).
  8. “Optics and optical instruments—test methods for radiation scattered by optical components,” ISO 13696:2002 (International Organization for Standardization, 2002).
  9. J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., Vol. PM24 of the SPIE Press Monographs (SPIE, 1995).
    [CrossRef]
  10. “Standard practice for angle resolved optical scatter measurements on specular diffuse surfaces,” ASTM E 1392-90 (American Society for Testing and Materials, 1990).
  11. “Guide for angle resolved optical scatter measurements on specular or diffuse surfaces,” (Semiconductor Equipment and Materials International, 2005).
  12. A. Duparré, “Test method for angle resolved scatter measurements,” DIN NAFuO, AA O18 AK2 and ISO/TC 172/SC 9/WG 6, new work item discussion paper (2004).
  13. S. Gliech, J. Steinert, A. Duparré, “Light-scattering measurements of optical thin-film components at 157 and 193 nm,” Appl. Opt. 41, 3224–3235 (2002).
    [CrossRef] [PubMed]
  14. J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
    [CrossRef]
  15. Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E.-B. Kley, H.-P. Herzig, eds., Proc. SPIE4440, 246–255 (2001).
    [CrossRef]
  16. A. Duparré, S. Gliech, G. Notni, J. Steinert, “Method and device for suppression of light absorption, light dispersion and contamination with wavelength below 200 nm,” European patentEP1423679 (2June2004).
  17. O. Kienzle, J. Staub, T. Tschudi, “Description of an integrated scatter instrument for measuring scatter losses of ‘superpolished’ optical surfaces,” Meas. Sci. Technol. 5, 747–752 (1994).
    [CrossRef]
  18. “A guide integrating sphere theory and applications” (Labsphere, Inc., 2004), http://www.labsphere.com .
  19. S. Gliech, “Entwicklung und Anwendung eines Messsystems zur Bestimmung des totalen Streulichts von optischen und technisch rauhen Oberflächen und Schichten,” Doctoral thesis (Technical University Ilmenau, 2003).
  20. Hamamatsu, data sheet for photomultiplier tubes R7311 and R7511 (Hamamatsu Corp., 2004), http://usa.hamamatsu.com .
  21. C. Asmail, J. Hsia, A. Parr, J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements,” Appl. Opt. 33, 6084–6091 (1994).
    [CrossRef] [PubMed]
  22. U. Griesmann, J. H. Burnett, “Refractivity of nitrogen gas in the vacuum ultraviolet,” Opt. Lett. 24, 1699–1701 (1999).
    [CrossRef]
  23. “A guide to reflectance coatings and materials” (Labsphere, Inc., 2004), http://www.labsphere.com .
  24. S. Schröder, “Untersuchungen zur Kalibrierung und Messung des Streulichts optischer Komponenten bei 193 nm und 157 nm,” Diploma thesis (Friedrich-Schiller-University, 2004).
  25. P. Bousquet, F. Flory, P. Roche, “Scattering from multilayer thin films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981).
    [CrossRef]
  26. J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
    [CrossRef]
  27. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
    [CrossRef] [PubMed]
  28. A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties Series (CRC Press, 1995), pp. 273–304.
  29. A. Duparré, “Scattering from surfaces and thin films,” in Encyclopedia of Modern Optics, B. D. Guenther, D. G. Steel, L. Bayvel, eds. (Elsevier, 2004).
  30. A. Hultker, S. Gliech, H. Geßner, A. Duparré, “Characterization of CaF2substrates for VUV fluoride coatings,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 119–126 (2004).
    [CrossRef]
  31. D. Ristau, S. Güster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borull, G. Kiriakidis, F. Peiró, E. Quesnel, A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
    [CrossRef] [PubMed]
  32. J. E. Rudisill, A. Duparré, S. Schröder, “Determination of scattering losses in ArF excimer laser all-dielectric mirrors for 193 nm microlithography application,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, Ch. J. Stolz, eds., Proc. SPIE5647, 9–24 (2004).

2004

A. Duparré, “Test method for angle resolved scatter measurements,” DIN NAFuO, AA O18 AK2 and ISO/TC 172/SC 9/WG 6, new work item discussion paper (2004).

2002

2001

O. Apel, K. Mann, “DUV scattering measurements as a tool for characterization of UV-optical surfaces,” Appl. Phys. A 72, 59–65 (2001).
[CrossRef]

1999

1994

C. Asmail, J. Hsia, A. Parr, J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements,” Appl. Opt. 33, 6084–6091 (1994).
[CrossRef] [PubMed]

O. Kienzle, J. Staub, T. Tschudi, “Description of an integrated scatter instrument for measuring scatter losses of ‘superpolished’ optical surfaces,” Meas. Sci. Technol. 5, 747–752 (1994).
[CrossRef]

1981

1979

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

Apel, O.

O. Apel, K. Mann, “DUV scattering measurements as a tool for characterization of UV-optical surfaces,” Appl. Phys. A 72, 59–65 (2001).
[CrossRef]

Asmail, C.

Barba, J.

J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
[CrossRef]

Bennett, J. M.

Biro, R.

Bloomstein, T. M.

T. M. Bloomstein, D. E. Hardy, L. Gomez, M. Rothschild, “Angle-resolved scattering measurements of polished surfaces and optical coatings at 157 nm,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 742–752 (2003).
[CrossRef]

Bosch, S.

Bousquet, P.

Burnett, J. H.

Cougrand, B.

J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
[CrossRef]

Delaboudinière, J.-P.

J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
[CrossRef]

Duparré, A.

A. Duparré, “Test method for angle resolved scatter measurements,” DIN NAFuO, AA O18 AK2 and ISO/TC 172/SC 9/WG 6, new work item discussion paper (2004).

D. Ristau, S. Güster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borull, G. Kiriakidis, F. Peiró, E. Quesnel, A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
[CrossRef] [PubMed]

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
[CrossRef] [PubMed]

S. Gliech, J. Steinert, A. Duparré, “Light-scattering measurements of optical thin-film components at 157 and 193 nm,” Appl. Opt. 41, 3224–3235 (2002).
[CrossRef] [PubMed]

A. Hultker, S. Gliech, H. Geßner, A. Duparré, “Characterization of CaF2substrates for VUV fluoride coatings,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 119–126 (2004).
[CrossRef]

J. E. Rudisill, A. Duparré, S. Schröder, “Determination of scattering losses in ArF excimer laser all-dielectric mirrors for 193 nm microlithography application,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, Ch. J. Stolz, eds., Proc. SPIE5647, 9–24 (2004).

A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties Series (CRC Press, 1995), pp. 273–304.

A. Duparré, S. Gliech, G. Notni, J. Steinert, “Method and device for suppression of light absorption, light dispersion and contamination with wavelength below 200 nm,” European patentEP1423679 (2June2004).

A. Duparré, “Scattering from surfaces and thin films,” in Encyclopedia of Modern Optics, B. D. Guenther, D. G. Steel, L. Bayvel, eds. (Elsevier, 2004).

Elson, J. M.

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

Falkenstein, Z.

Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E.-B. Kley, H.-P. Herzig, eds., Proc. SPIE4440, 246–255 (2001).
[CrossRef]

Ferre-Borrull, J.

Ferré-Borull, J.

Flory, F.

Geßner, H.

A. Hultker, S. Gliech, H. Geßner, A. Duparré, “Characterization of CaF2substrates for VUV fluoride coatings,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 119–126 (2004).
[CrossRef]

Gliech, S.

S. Gliech, J. Steinert, A. Duparré, “Light-scattering measurements of optical thin-film components at 157 and 193 nm,” Appl. Opt. 41, 3224–3235 (2002).
[CrossRef] [PubMed]

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
[CrossRef] [PubMed]

A. Duparré, S. Gliech, G. Notni, J. Steinert, “Method and device for suppression of light absorption, light dispersion and contamination with wavelength below 200 nm,” European patentEP1423679 (2June2004).

A. Hultker, S. Gliech, H. Geßner, A. Duparré, “Characterization of CaF2substrates for VUV fluoride coatings,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 119–126 (2004).
[CrossRef]

S. Gliech, “Entwicklung und Anwendung eines Messsystems zur Bestimmung des totalen Streulichts von optischen und technisch rauhen Oberflächen und Schichten,” Doctoral thesis (Technical University Ilmenau, 2003).

Gomez, L.

T. M. Bloomstein, D. E. Hardy, L. Gomez, M. Rothschild, “Angle-resolved scattering measurements of polished surfaces and optical coatings at 157 nm,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 742–752 (2003).
[CrossRef]

Griesmann, U.

Güster, S.

Hardy, D. E.

T. M. Bloomstein, D. E. Hardy, L. Gomez, M. Rothschild, “Angle-resolved scattering measurements of polished surfaces and optical coatings at 157 nm,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 742–752 (2003).
[CrossRef]

Hasegawa, M.

Hochedez, J.-F.

J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
[CrossRef]

Hoeft, J.

Hsia, J.

Hultker, A.

A. Hultker, S. Gliech, H. Geßner, A. Duparré, “Characterization of CaF2substrates for VUV fluoride coatings,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 119–126 (2004).
[CrossRef]

Kadkhoda, P.

P. Kadkhoda, A. Müller, D. Ristau, “Total scatter losses of optical components in the DUV/VUV spectral range,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3902, 118–127 (2000).

Kienzle, O.

O. Kienzle, J. Staub, T. Tschudi, “Description of an integrated scatter instrument for measuring scatter losses of ‘superpolished’ optical surfaces,” Meas. Sci. Technol. 5, 747–752 (1994).
[CrossRef]

Kiriakidis, G.

Lemaire, P.

J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
[CrossRef]

Mann, K.

O. Apel, K. Mann, “DUV scattering measurements as a tool for characterization of UV-optical surfaces,” Appl. Phys. A 72, 59–65 (2001).
[CrossRef]

Masetti, E.

Matsumoto, A.

Müller, A.

P. Kadkhoda, A. Müller, D. Ristau, “Total scatter losses of optical components in the DUV/VUV spectral range,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3902, 118–127 (2000).

Niisaka, S.

Notni, G.

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
[CrossRef] [PubMed]

A. Duparré, S. Gliech, G. Notni, J. Steinert, “Method and device for suppression of light absorption, light dispersion and contamination with wavelength below 200 nm,” European patentEP1423679 (2June2004).

Otani, M.

Ouchi, C.

Parr, A.

Peiró, F.

Quesnel, E.

Ristau, D.

D. Ristau, S. Güster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borull, G. Kiriakidis, F. Peiró, E. Quesnel, A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
[CrossRef] [PubMed]

P. Kadkhoda, A. Müller, D. Ristau, “Total scatter losses of optical components in the DUV/VUV spectral range,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3902, 118–127 (2000).

Roche, P.

Rothschild, M.

T. M. Bloomstein, D. E. Hardy, L. Gomez, M. Rothschild, “Angle-resolved scattering measurements of polished surfaces and optical coatings at 157 nm,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 742–752 (2003).
[CrossRef]

Rudisill, J. E.

J. E. Rudisill, A. Duparré, S. Schröder, “Determination of scattering losses in ArF excimer laser all-dielectric mirrors for 193 nm microlithography application,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, Ch. J. Stolz, eds., Proc. SPIE5647, 9–24 (2004).

Saito, J.

Saito, T.

Schröder, S.

J. E. Rudisill, A. Duparré, S. Schröder, “Determination of scattering losses in ArF excimer laser all-dielectric mirrors for 193 nm microlithography application,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, Ch. J. Stolz, eds., Proc. SPIE5647, 9–24 (2004).

S. Schröder, “Untersuchungen zur Kalibrierung und Messung des Streulichts optischer Komponenten bei 193 nm und 157 nm,” Diploma thesis (Friedrich-Schiller-University, 2004).

Sone, K.

Staub, J.

O. Kienzle, J. Staub, T. Tschudi, “Description of an integrated scatter instrument for measuring scatter losses of ‘superpolished’ optical surfaces,” Meas. Sci. Technol. 5, 747–752 (1994).
[CrossRef]

Steinert, J.

Stover, J. C.

J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., Vol. PM24 of the SPIE Press Monographs (SPIE, 1995).
[CrossRef]

Suzuki, Y.

Tanaka, A.

Tikhonravov, A.

Tschudi, T.

O. Kienzle, J. Staub, T. Tschudi, “Description of an integrated scatter instrument for measuring scatter losses of ‘superpolished’ optical surfaces,” Meas. Sci. Technol. 5, 747–752 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. A

O. Apel, K. Mann, “DUV scattering measurements as a tool for characterization of UV-optical surfaces,” Appl. Phys. A 72, 59–65 (2001).
[CrossRef]

DIN NAFuO, AA O18 AK2 and ISO/TC 172/SC 9/WG 6, new work item discussion paper

A. Duparré, “Test method for angle resolved scatter measurements,” DIN NAFuO, AA O18 AK2 and ISO/TC 172/SC 9/WG 6, new work item discussion paper (2004).

J. Opt. Soc. Am.

Meas. Sci. Technol.

O. Kienzle, J. Staub, T. Tschudi, “Description of an integrated scatter instrument for measuring scatter losses of ‘superpolished’ optical surfaces,” Meas. Sci. Technol. 5, 747–752 (1994).
[CrossRef]

Opt. Eng.

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

Opt. Lett.

Other

A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties Series (CRC Press, 1995), pp. 273–304.

A. Duparré, “Scattering from surfaces and thin films,” in Encyclopedia of Modern Optics, B. D. Guenther, D. G. Steel, L. Bayvel, eds. (Elsevier, 2004).

A. Hultker, S. Gliech, H. Geßner, A. Duparré, “Characterization of CaF2substrates for VUV fluoride coatings,” in Advances in Optical Thin Films, C. Amra, N. Kaiser, H. A. Macleod, eds., Proc. SPIE5250, 119–126 (2004).
[CrossRef]

J. E. Rudisill, A. Duparré, S. Schröder, “Determination of scattering losses in ArF excimer laser all-dielectric mirrors for 193 nm microlithography application,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, Ch. J. Stolz, eds., Proc. SPIE5647, 9–24 (2004).

“A guide integrating sphere theory and applications” (Labsphere, Inc., 2004), http://www.labsphere.com .

S. Gliech, “Entwicklung und Anwendung eines Messsystems zur Bestimmung des totalen Streulichts von optischen und technisch rauhen Oberflächen und Schichten,” Doctoral thesis (Technical University Ilmenau, 2003).

Hamamatsu, data sheet for photomultiplier tubes R7311 and R7511 (Hamamatsu Corp., 2004), http://usa.hamamatsu.com .

D. Lammers, “Lithography gear switches for 65 nm,” (EE Times, 12July2004), http://www.eedesign.com .

A. Hand, “Tricks with water and light: 193 nm extension” (Semiconductor International, 1February2004), http://www.reed-electronics.com/semiconductor .

P. Kadkhoda, A. Müller, D. Ristau, “Total scatter losses of optical components in the DUV/VUV spectral range,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3902, 118–127 (2000).

“A guide to reflectance coatings and materials” (Labsphere, Inc., 2004), http://www.labsphere.com .

S. Schröder, “Untersuchungen zur Kalibrierung und Messung des Streulichts optischer Komponenten bei 193 nm und 157 nm,” Diploma thesis (Friedrich-Schiller-University, 2004).

J.-F. Hochedez, P. Lemaire, J.-P. Delaboudinière, B. Cougrand, J. Barba, “Use of thinned backside illuminated CCDs from the extreme UV to the soft UV,” in Reconnaissance, Astronomy, Remote Sensing and Photogrammetry, I. Hirschberg, ed., Proc. SPIE1070, 53 (1989).
[CrossRef]

Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E.-B. Kley, H.-P. Herzig, eds., Proc. SPIE4440, 246–255 (2001).
[CrossRef]

A. Duparré, S. Gliech, G. Notni, J. Steinert, “Method and device for suppression of light absorption, light dispersion and contamination with wavelength below 200 nm,” European patentEP1423679 (2June2004).

T. M. Bloomstein, D. E. Hardy, L. Gomez, M. Rothschild, “Angle-resolved scattering measurements of polished surfaces and optical coatings at 157 nm,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 742–752 (2003).
[CrossRef]

“Standard test method for measuring the effective surface roughness of optical components by total integrated scattering,” (American Society for Testing and Materials, 1987).

“Optics and optical instruments—test methods for radiation scattered by optical components,” ISO 13696:2002 (International Organization for Standardization, 2002).

J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., Vol. PM24 of the SPIE Press Monographs (SPIE, 1995).
[CrossRef]

“Standard practice for angle resolved optical scatter measurements on specular diffuse surfaces,” ASTM E 1392-90 (American Society for Testing and Materials, 1990).

“Guide for angle resolved optical scatter measurements on specular or diffuse surfaces,” (Semiconductor Equipment and Materials International, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Geometry for scattering into the backward hemisphere. 1, Sample surface; 2, incident beam; 3, specularly reflected beam; 4, beam scattered into the solid angle (ΔΩs) of detection; θi, polar angle of incidence; θr, polar angle of specular reflection; θs, polar and ϕs, azimuthal angles of detected scattering.

Fig. 2
Fig. 2

Schematic overview of the measurement system. L, excimer laser; BC, beam preparation chamber; MC, measurement chamber; CS, Coblentz sphere arrangement for TS measurement; G, double goniometer arrangement for ARS measurement, which can be inserted as indicated by the arrow.

Fig. 3
Fig. 3

Photograph of the measurement chamber (upper right), the beam preparation chamber (lower right), and the Coblentz sphere (CS) and precision double goniometer (G) arrangements contained in the measurement chamber.

Fig. 4
Fig. 4

Beam path in the beam preparation chamber. L, excimer laser; T, connecting tube; BC, beam preparation chamber; B, beam to measurement chamber; 1, laser rear mirror; 2, laser output coupler; 3, aperture; 4, deflecting mirror; 5, CaF2 window; 6, deflecting mirror; 7, attenuator; 8 and 9, apertures; 10, focusing mirror; 11, pinhole; 12, focusing mirror; 13, beam-splitter substrate; 14, aperture; 15, deflecting mirror; 16, attenuator; 17, CaF2 diffuser; 18, reference detector.

Fig. 5
Fig. 5

Measurement chamber with Coblentz sphere arrangement for TS measurement. Switching between (a) backscattering mode and (b) forward-scattering mode is accomplished by rotating the complete arrangement about axis A. B, laser beam from beam preparation chamber; MC, measurement chamber; CS, Coblentz sphere; A, rotation axis; 1, aperture; 2, sample holder with sample; 3, sample positioning unit; 4, CaF2 diffuser; 5, photomultiplier tube; 6, exit port [and entrance port in (a)]; 7, deflecting mirror; 8, beam dump.

Fig. 6
Fig. 6

Beam intensity profile on the sample.

Fig. 7
Fig. 7

ARS module in measurement chamber: (a) top view without TS setup, (b) side view with TS setup. B, beam from beam preparation chamber, CS, TS setup; MC, measurement chamber; 1, deflecting mirrors; 2, sample; 3, sample positioning unit; 4, inner goniometer arm; 5, outer goniometer arm; 6, deflecting mirrors on outer goniometer arm; 7, apertures; 8, CaF2 diffuser; 9, PMT; 10,

Fig. 8
Fig. 8

Background scattering levels for TS measurements at (a) 193 and (b) 157 nm.

Fig. 9
Fig. 9

ARS of a CaF2 diffuser measured at 193 nm. θs = 0° corresponds to the direction of specular reflection; θs = 180° corresponds to the direction of specular transmission.

Fig. 10
Fig. 10

Instrument signatures of the ARS setup at 157 and 193 nm. The peak values for θs = 180° amount to 1/ΔΩs = 4.8 × 104.

Fig. 11
Fig. 11

One-dimensional TSf scans and two-dimensional TSf mappings at 157 nm of two CaF2 surfaces.

Fig. 12
Fig. 12

TS measurement at 193 nm of a CaF2 disk with radially varying polishing quality.

Fig. 13
Fig. 13

ARS measurement at 193 nm and simulation of roughness-induced ARS of a superpolished CaF2 substrate indicating volume scattering.

Fig. 14
Fig. 14

TSb and TSf for an uncoated CaF2 standard polished substrate, an AR coating, and a HR coating.

Fig. 15
Fig. 15

Results for 193 nm ARS measurement for different HR coatings.

Fig. 16
Fig. 16

Modeled and measured ARS (193 nm) of an [AlF3/LaF3/oxide]x HR coating.

Tables (1)

Tables Icon

Table 1 Averaged TSf and rms Roughness σ

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

TS = P s P i ,
BSDF = Δ P s / Δ Ω s P i cos θ s .
ARS = Δ P s / Δ Ω s P i .
U = k PMT k a V s V r ,
1 = R + T + A + T S b + T S f ,
TS = c U .
TS c , b = c U c , b , TS c , f = c U c , f .
1 = R c + T c + A c + c ( U c , b + U c , f ) .
c = 1 - R c - T c U c , b + U c , f .
TS sample = c U sample .
ARS ( θ s ) = c U ( θ s ) .
ARS Lambert ( θ s ) = 1 π cos θ s .
Δ P s ( θ s ) P i = U sample ( θ s ) U i .
ARS sample ( θ s ) = U sample ( θ s ) Δ Ω s U i .
1 = 2 π 0 π sin θ s ARS c ( θ s ) d θ s .
1 c = 2 π 0 π sin θ s U c ( θ s ) d θ s .
ARS sample ( θ s ) = c U sample ( θ s ) .
( Δ U U ) 2 = ( Δ k PMT k PMT ) 2 + ( Δ k a k a ) 2 + ( Δ V s V s ) 2 + ( Δ V r V r ) 2 .
( Δ TS sample TS sample ) 2 = ( Δ c c ) 2 + ( Δ U sample U sample ) 2 ,
( Δ c c ) 2 = Δ R c 2 + Δ T c 2 ( 1 - R c - T c ) 2 + Δ U c , b 2 + Δ U c , f 2 ( U c , b + U c , f ) 2 .
( Δ c c ) 2 = ( Δ ARS ARS ) 2 ( R c 2 + T c 2 1 - R c - T c ) + 26 36 ( Δ U U ) 2 .
ARS = F ( λ , n , θ s , ϕ s ) PSD ( f ) .
T S b = R 0 ( 4 π σ λ ) 2 ,
T S f = T 0 [ 2 π σ λ ( n - 1 ) ] 2 ,
ARS ( θ s , ϕ s ) = i = 0 N j = 0 N F i F j * PSD i j ( f ) ,

Metrics