Abstract

An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]
  2. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [CrossRef]
  3. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. A. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1987).
    [CrossRef]
  4. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd: YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  5. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]
  6. C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
    [CrossRef]
  7. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  8. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2431 (1999).
    [CrossRef]
  9. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002).
    [CrossRef] [PubMed]
  10. C. Flesia, C. L. Korb, C. Hirt, “Double-edge molecular measurement of lidar wind profiles at 355 nm,” Opt. Lett. 25, 1466–1468 (2000).
    [CrossRef]
  11. B. M. Gentry, H. Chen, S. X. Li, “Wind measurements with 355 nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233 (2000).
    [CrossRef]
  12. D. Bruneau, A. Garnier, A. Hertzog, J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer comparison with a Fabry-Perot interferometer,” Appl. Opt. 43, 173–182 (2004).
    [CrossRef] [PubMed]
  13. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: Theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  14. C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
    [CrossRef] [PubMed]
  15. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  16. M. J. McGill, W. D. Hart, J. A. McKay, J. D. Spinhirne, “Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability,” Appl. Opt. 38, 6388–6397 (1999).
    [CrossRef]
  17. M. Imaki, D. Sun, T. Kobayashi, “Direct-detection Doppler lidar for two dimensional wind field measurements of the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singn, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 303–310 (2002).
    [CrossRef]
  18. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High-spectral-resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  19. J. T. Trauger, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High-spectral-resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
    [CrossRef]
  20. P. Piironen, E. E. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  21. C. J. Grund, E. W. Eloranta, “Fiber-optic scrambler reduces the bandpass range dependence of Fabry–Perot etalons used for spectral analysis of lidar backscatter,” Appl. Opt. 30, 2668–2670 (1991).
    [CrossRef] [PubMed]
  22. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  23. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  24. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  25. L. Elterman, “UV, visible and IR attenuation for altitudes to 50 km, 1968,” (Air Force Cambridge Research Laboratories, 1968).

2004 (1)

2002 (1)

2001 (1)

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

2000 (2)

1999 (2)

1997 (1)

1996 (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

1995 (1)

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (2)

1989 (2)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd: YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

1987 (1)

1985 (1)

1984 (1)

1983 (2)

1981 (1)

Anderson, J.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Atlas, R.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Baker, W.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Banta, R. M.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

Bowdle, D.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Brown, R.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bruneau, D.

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chen, H.

Chen, W. B.

Eloranta, E. E.

Eloranta, E. W.

Elterman, L.

L. Elterman, “UV, visible and IR attenuation for altitudes to 50 km, 1968,” (Air Force Cambridge Research Laboratories, 1968).

Emmitt, G. D.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Fernald, F. G.

Flesia, C.

Garnier, A.

Gentry, B. M.

George, J. L.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

Ground, C.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

Grund, C. J.

Hair, J. W.

Hale, C. P.

Hall, F. F.

Hardesty, R. H.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. A. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1987).
[CrossRef]

Hart, W. D.

Hauchecorne, A.

Henderson, S. W.

Hertzog, A.

Hirt, C.

Howell, J. N.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

Huffaker, A. V.

Huffaker, R. M.

Imaki, M.

M. Imaki, D. Sun, T. Kobayashi, “Direct-detection Doppler lidar for two dimensional wind field measurements of the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singn, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 303–310 (2002).
[CrossRef]

Jackson, M.

Kavaya, M. J.

Klett, J. D.

Kobayashi, T.

M. Imaki, D. Sun, T. Kobayashi, “Direct-detection Doppler lidar for two dimensional wind field measurements of the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singn, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 303–310 (2002).
[CrossRef]

Korb, C. L.

Krishnamurti, T.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Lawrence, T. R.

Li, S. X.

Liu, J. T.

Liu, Z. S.

Lorenc, A.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Magee, J. R.

McElroy, J.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

McGill, M. J.

McKay, J. A.

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Menzies, R.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Molinari, J.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Paegle, J.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Piironen, P.

Porteneuve, J.

Post, M.

Post, M. J.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Richter, R. A.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. A. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1987).
[CrossRef]

Robertson, F.

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Roesler, F. L.

She, C. Y.

Shipley, S. T.

Song, X. Q.

Souprayen, C.

Spinhirne, J. D.

Sroga, J. T.

Sun, D.

M. Imaki, D. Sun, T. Kobayashi, “Direct-detection Doppler lidar for two dimensional wind field measurements of the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singn, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 303–310 (2002).
[CrossRef]

Tracy, D. H.

Trauger, J. T.

Tryon, P. J.

Weber, B. F.

Weickmann, A. M.

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

Weinman, J. A.

Weng, C. Y.

Wu, D.

Zhang, K. L.

Appl. Opt. (13)

F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. A. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1987).
[CrossRef]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2431 (1999).
[CrossRef]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002).
[CrossRef] [PubMed]

D. Bruneau, A. Garnier, A. Hertzog, J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer comparison with a Fabry-Perot interferometer,” Appl. Opt. 43, 173–182 (2004).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: Theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

M. J. McGill, W. D. Hart, J. A. McKay, J. D. Spinhirne, “Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability,” Appl. Opt. 38, 6388–6397 (1999).
[CrossRef]

C. J. Grund, E. W. Eloranta, “Fiber-optic scrambler reduces the bandpass range dependence of Fabry–Perot etalons used for spectral analysis of lidar backscatter,” Appl. Opt. 30, 2668–2670 (1991).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High-spectral-resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

J. T. Trauger, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High-spectral-resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

W. Baker, G. D. Emmitt, F. Robertson, R. Atlas, J. Molinari, D. Bowdle, J. Paegle, R. H. Hardesty, R. Menzies, T. Krishnamurti, R. Brown, M. J. Post, J. Anderson, A. Lorenc, J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

J. Atmos. Ocean Technol. (1)

C. Ground, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean Technol. 18, 376–393 (2001).
[CrossRef]

Opt. Lett. (5)

Proc. IEEE (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Other (3)

M. Imaki, D. Sun, T. Kobayashi, “Direct-detection Doppler lidar for two dimensional wind field measurements of the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singn, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 303–310 (2002).
[CrossRef]

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

L. Elterman, “UV, visible and IR attenuation for altitudes to 50 km, 1968,” (Air Force Cambridge Research Laboratories, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the UV high-spectral-resolution Doppler lidar system. M-1–M-3, mirrors; BS-1–BS-3, beam splitters; PMT-1–PMT-3, photomultiplier detectors for the detection of Mie, Doppler shift, and total power, respectively.

Fig. 2
Fig. 2

Spectral profiles of the Mie and the Rayleigh backscatterings and the transmission function of two filters.

Fig. 3
Fig. 3

Effective transmittances as a function of the signal frequency from the laser frequency ν0 for the Mie and the Rayleigh backscattering. fia and fim are the Mie and Rayleigh transmittance of the ith filter, respectively.

Fig. 4
Fig. 4

Doppler filter sensitivity as a function of the filter frequency for the Mie and the Rayleigh backscattering for the Mie and the Doppler filters of the experimental system. (a) Doppler filter sensitivity for the Mie backscattering, (b) Doppler filter sensitivity for the Rayleigh backscattering.

Fig. 5
Fig. 5

Height distribution of range-corrected power and derived parameters with 104 shots average, range resolution of 300 m, and the zenith angle observed from 15:00 JST on 18 February 2004. (a) Range-corrected power, (b) the corrected Rayleigh and Mie scattering power, and (c) the aerosol extinction coefficient and the lidar ratio.

Fig. 6
Fig. 6

Comparison of the time variation of the radial wind velocity data measured by the anemometer and the Doppler lidar. The lidar range resolution is 3 m and 100 shots average.

Fig. 7
Fig. 7

Horizontal wind velocity distribution for two opposite beam directions with an elevation angle of 3.2°, a range resolution of 50 m, and 102 shots average, observed on 1 December 2004.

Fig. 8
Fig. 8

Two-dimensional wind distribution. (a) Horizontal distribution of the wind velocity with a range resolution of 150 m, a scanning step angle of 6°, 100 shots average, and an observation time of 200 s, observed on 1 December 2003. (b) Vertical distributions of the wind velocity with a range resolution of 150 m, a scanning step angle of 5°, 50 shots average, and an observation time of 35 s, observed on 16 April 2004.

Fig. 9
Fig. 9

Wind velocity accuracy as a function of horizontal range with 100 shots average for the HSR lidar with the parameters listed in Table 1.

Tables (1)

Tables Icon

Table 1 System Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

f 1 m ( ν , T ) = f 1 ( ν ) h m ( ν - ν , T ) d ν ,
f 2 m ( ν , T ) = f 2 ( ν ) h m ( ν - ν , T ) d ν ,
P 1 ( z , ν ) = η 1 k R 2 Y ( z ) T 2 ( z ) [ β a ( z , ν ) f 1 a ( ν ) + β m ( z , ν ) f 1 m ( ν ) ] / z 2 .
P 2 ( z , ν ) = η 2 k T 2 R 3 Y ( z ) T 2 ( z ) [ β a ( z , ν ) f 2 a ( ν ) + β m ( z , ν ) f 2 m ( ν ) ] / z 2 ,
P 3 ( z , ν ) = η 3 k T 2 T 3 Y ( z ) T 2 ( z ) [ β a ( z , ν ) + β m ( z , ν ) ] / z 2 ,
P m ( z , ν ) = P 3 ( z , ν ) f 1 a ( ν ) / ( η 3 T 2 T 3 ) - P 1 ( z , ν ) / ( η 1 R 2 ) f 1 a ( ν ) - f 1 m ( ν ) .
P a ( z , ν ) = P 1 ( z , ν ) / ( η 1 R 2 ) - P 3 ( z , ν ) f 1 m ( ν ) / ( η 3 T 2 T 3 ) f 1 a ( ν ) - f 1 m ( ν ) .
Δ ν = 2 V r ν 0 / c ,
P d ( z , ν ) = P 2 ( z , ν ) / ( η 2 T 2 R 3 ) - P m ( z , ν ) f 2 m ( ν ) .
N ( z , ν ) = P d ( z , ν ) / P a ( z , ν ) .
Θ 2 a ( z , ν ) = 1 N ( z , ν ) d N ( z , ν ) d V r ,
V r ( z , Δ ν ) = N ( z , ν 0 + Δ ν ) - N 0 ( ν 0 ) N 0 ( ν 0 ) Θ 2 a ( z , ν 0 + Δ ν ) ,
Δ V r ( z , ν ) = 1 SNR ( z , ν ) Θ 2 a ( z , ν ) ,
SNR ( z , ν ) = { [ SNR a ( z , ν ) ] - 2 + [ SNR d ( z , ν ) ] - 2 } 1 / 2 ,
α ( z , ν ) = - 1 2 d ln [ P m ( z , ν ) z 2 ] d z + 1 2 β m ( z , ν ) d β m ( z , ν ) d z ,
α a ( z , ν ) = α ( z , ν ) - α m ( z , ν ) ,
Δ z = c ( τ 1 2 + τ g 2 ) 1 / 2 / 2.

Metrics